An unmanned 11-meter rigid hulled inflatable boat (RHIB) from Naval Surface Warfare Center Carderock operates autonomously during an Office of Naval Research (ONR) sponsored Swarm demonstration held on the James River in Newport News, Va., in August. (US Navy photo)

Breaking News

see all items

Press Releases

see all items

21/10/2014

UK Confirms Reaper, Rivet Joint Missions Over Syria

The Defence Secretary has announced that UK Reaper and Rivet Joint aircraft will fly surveillance missions over Syria. UK Reaper remotely piloted aircraft systems and Rivet Joint aircraft will be authorised to fly surveillance missions over Syria. The deployment will see the Royal Air Force aircraft gathering intelligence as the UK ramps up efforts to protect our national interests from the terrorist threat emanating the country. Reapers are not authorised to use weapons in Syria and, alongside Rivet Joint, will provide vital situational awareness making it an invaluable asset to the coalition allies who are combating ISIL. -ends-
20/10/2014

X-37B Orbital Test Vehicle Completes 3rd Flight

VANDENBERG AFB, Calif. --- The Boeing built X-37B Orbital Test Vehicle (OTV) successfully de-orbited and landed today at Vandenberg Air Force Base at 9:24 a.m. PDT, concluding a 674-day experimental test mission for the U.S. Air Force Rapid Capabilities Office. The X-37B was launched from Cape Canaveral Air Force Station, Fla., on Dec. 11, 2012. “We congratulate the Air Force Rapid Capabilities Office and the 30th Space Wing at Vandenberg Air Force Base on this third successful OTV mission,” said Ken Torok, Boeing director of Experimental Systems. “With a program total of 1,367 days on orbit over three missions, these agile and powerful small space vehicles have completed more days on orbit than all 135 Space Shuttle missions combined, which total 1,334 days. The innovative X-37B combines the best of an aircraft and a spacecraft into an affordable, responsive unmanned vehicle and continues to demonstrate that reusable space vehicles are affordable options that support vital missions.” The first OTV mission began April 22, 2010, and concluded on Dec. 3, 2010, after 224 days in orbit. The second OTV mission began March 5, 2011, and concluded on June 16, 2012, after 468 days on orbit. The X-37B program is demonstrating a reliable, reusable unmanned space test platform for the Air Force. Its objectives include space experimentation, risk reduction and concept-of-operations development for reusable space vehicle technologies that could become key enablers for future space missions. Boeing's commitment to this space-based unmanned vehicle spans a decade and includes support to the Air Force Research Lab's X-40 program, NASA's X-37 program and the Defense Advanced Research Projects Agency's X-37 Approach & Landing Test Vehicle program. A unit of The Boeing Company, Boeing Defense, Space & Security is one of the world's largest defense, space and security businesses specializing in innovative and capabilities-driven customer solutions, and the world's largest and most versatile manufacturer of military aircraft. Headquartered in St. Louis, Boeing Defense, Space & Security is a $32 billion business with 56,000 employees worldwide. -ends-
17/10/2014

UK Deploys Reaper UAVs to the Middle East

The Defence Secretary has announced that UK Reaper Remotely Piloted Aircraft Systems (RPAS) will be deployed in the efforts to combat ISIL. The deployment will see the Royal Air Force RPAS provide additional intelligence, surveillance and reconnaissance support to the Iraqi government and coalition allies in support of our national interests and ongoing efforts to combat ISIL. Reaper operations are expected to start shortly. Since the granting of parliamentary approval last month the UK has conducted air strikes on multiple ISIL targets in northern Iraq, operating from RAF Akrotiri in Cyprus. The deployment of RPAS complements the existing surveillance assets already in the region. Defence Secretary Michael Fallon said: “The surveillance capability of Reaper will see it provide vital situational awareness, making it an invaluable asset to the Iraqi Government and the coalition allies in helping counter the threat from ISIL and supporting our vital interests in the area. “If strike operations are required then Reaper has the ability to complement the sorties RAF Tornados have already completed.” The deployment is the first operational use of UK Reaper outside Afghanistan. Reaper is the UK’s only armed remotely-piloted aircraft. The policy for the use of unmanned aircraft is the same as that for manned aircraft, with the RAF pilots operating under strict UK Rules of Engagement. The deployment of Reaper to the Middle East coincides with the conclusion of the first UK training programme for Kurdish forces in Northern Iraq. Forty members of the Peshmerga have been instructed on the use of heavy machine guns gifted by the UK last month, during a week-long course run by personnel from 2nd Battalion The Yorkshire Regiment. The training will allow the troops to pass on expertise to other Kurdish units. -ends-
17/10/2014

Second MQ-4C Triton UAV Completes First Flight

PATUXENT RIVER, Md. --- The second MQ-4C Triton unmanned aircraft takes off from Northrop Grumman's Palmdale, Calif. facility Oct.15 for its inaugural flight. The 6.7 hour flight prepared the aircraft for its cross-country trip to Naval Air Station Patuxent River this month, where it will continue the next phase of the flight test program. (ends)
17/10/2014

USS Coronado Tests MQ-8B Fire Scout UAV

SAN DIEGO --- Sailors aboard USS Coronado (LCS 4) recently conducted dynamic interface testing with the MQ-8B Fire Scout Vertical Take-Off and Landing Tactical Unmanned Aerial Vehicle (VTUAV) NAVSEA announced Oct. 16. The tests familiarized the crew with operating unmanned aircraft, verified and expanded the launch and recovery envelopes, and identified opportunities for envelope expansion, thereby demonstrating the future concept of operations for unmanned helicopters aboard LCS. "VTUAV brings great capability to LCS," said Capt. Tom Anderson, program manager for Littoral Combat Ships, "and will be included as a module within each of the three LCS mission packages. Just as LCS is a modular warship, VTUAV is a modular airframe and will employ specific sensors to support the assigned mission. VTUAV will support mine detection operations with the mine countermeasures mission package, and the 'detect, classify, and identification' mission with the surface warfare and anti-submarine mission packages. I am excited about getting this capability into the hands of the fleet." LCS is expected to routinely deploy with Fire Scout in addition to a manned MH-60 helicopter as part of its surface warfare (SUW), mine countermeasures (MCM), and anti-submarine warfare (ASW) mission packages. The Fire Scout will complement the MH-60 by extending the range and endurance of ship-based intelligence gathering operations. Coronado, the second ship of the Independence variant of LCS, completed Final Contract Trials (FCT) in June, participated in RIMPAC exercises in July, and will continue developmental testing of the ship and the SUW mission package in preparation for Initial Operational Testing and Evaluation and Initial Operational Capability. Coronado is scheduled to begin Post Shakedown Availability in October, where she will undergo a maintenance period to correct any deficiencies discovered during FCT. The LCS class consists of the Freedom variant and Independence variant, designed and built by two industry teams. The Freedom variant team is led by Lockheed Martin (for odd-numbered hulls, e.g. LCS 1). The Independence variant team is led by General Dynamics, Bath Iron Works (LCS 2 and LCS 4) and Austal USA (for subsequent even-numbered hulls). Purchased under the innovative block-buy acquisition strategy, 12 ships are currently under construction. LCS is a modular, reconfigurable ship, with three types of mission packages: SUW, MCM, and ASW. The Program Executive Office for Littoral Combat Ships is responsible for delivering and sustaining credible littoral mission capabilities to the fleet. Delivering high-quality warfighting assets while balancing affordability and capability is key to supporting the nation's maritime strategy. -ends-
16/10/2014

More on US Navy’s Autonomous Swarmboats

In the not-so-distant past, scientific research that started here on Earth often ended up being used in spaceships and other craft among the planets and stars. In the case of the Navy’s newest breakthrough technology, however, it was science from NASA used in the Mars Rover space flights that ultimately put Sailors and Marines on the road to CARACaS. CARACaS, in this case, stands for Control Architecture for Robotic Agent Command and Sensing. In essence, CARACaS is the latest, most intriguing advance in unmanned, autonomous capability for the U.S. Navy. CARACaS is a first-of-its-kind technology that allows Navy vessels to autonomously “swarm” on adversaries. The combination of software and hardware — including radar and electro-optical/infra-red sensors — can be put into a transportable kit and installed on almost any boat, allowing it to become an unmanned surface vehicle, or USV. With the kits installed, multiple USVs can move in sync or on their own; choose their own routes together or individually; escort ships; protect ports; and deter, damage or destroy hostile vessels on the water. Here at the Office of Naval Research, we’ve been working to develop this technology for more than a decade. It hasn’t been easy (good things seldom are), but with untiring efforts from partners across the U.S. Navy, academia and industry, we achieved an historic first this August: We put CARACaS kits on multiple USVs, and successfully demonstrated the new capability of autonomous swarming — both in escorting a vessel from the fleet, and in showing the ability to engage a designated-hostile craft. In the big picture, CARACaS represents a new frontier in autonomy, and opens up new horizons in naval operations. Imagine in the future if every fleet in the U.S. Navy had a regular presence of autonomous craft at every port, protecting ships and Sailors, and providing naval commanders with additional strategic resources. Certainly the ability to use autonomous swarmboats gives commanders a host of new options in how to address surface threats, both in the littorals and on the high seas. And since it uses already existing craft, while also decreasing manning requirements, this technology represents significant cost savings. Most important, it offers new safeguards for our Sailors and Marines. An enemy vessel speeding toward a destroyer, for instance, could be stopped by unmanned craft acting as (in essence) guard dogs, well before it got near enough to self-detonate or otherwise attack the manned Navy vessel. Our people are our most important priority, and autonomous swarm puts that maxim front and center. As we remember the October 2000 attack on USS Cole (DDG 67), technology advances like CARACaS take on an even greater importance for all Americans. Some have asked about the potential use of live fire from the autonomous craft, with pop culture references to “Terminator” or “Robocop.” While the focus of the recent demo did not involve testing weapons fire from an autonomous swarmboat, the Navy has stated clearly: Live fire from any autonomous vessel will always be decided, authorized, targeted and controlled by a supervising Sailor or Marine. While science fiction may inspire different perspectives on autonomy, ONR’s job is to explore the realm of the possible, in order to give our warfighters every advantage (and we do that with only about 1 percent of the Department of the Navy’s budget). As the Chief of Naval Research has said: We never want to see our Sailors and Marines in a “fair fight.” There’s no question that autonomy and unmanned systems are here to stay, and growing in importance for our operational capabilities. Don’t doubt for a minute that our adversaries are working to advance their own autonomous systems. Technology like CARACaS will support our warriors as they keep this country safe, both at home and around the world. It took a long time for us to reach CARACaS. Now we’re well on the way to providing our Sailors and Marines with a new and powerful tool to help them accomplish their mission. Dr. Robert A. Brizzolara, program manager for the Sea Platforms and Weapons Division at the Office of Naval Research, leads the CARACaS research program. -ends-
15/10/2014

Predator/Gray Eagle UAVs Pass 3 Million Flight Hours

WASHINGTON --- General Atomics Aeronautical Systems, Inc. today announced that its Predator/Gray Eagle-series aircraft family has achieved a historic company and industry milestone: three million flight hours which is the equivalent of flying over 340 years, around-the-clock, every day. The milestone occurred on October 2, with nearly 222,000 total missions completed and almost 90-percent of all missions flown in combat. "Three million flight hours is a tremendous accomplishment that attests to the reliability and versatility of our proven technology," said Linden P. Blue, CEO, GA-ASI. "We strive to provide solutions that support the requirements of our customers but could not have reached this milestone without the hard work and dedication of our employees. We eagerly look forward to four million flight hours and beyond and will keep focusing on improving the mission capabilities of our systems because what they can do when they're flying is as important as keeping them airborne." The identification of the specific aircraft and customer that achieved the milestone is unknown as every second of every day over 68 GA-ASI aircraft are airborne worldwide. On October 2, 133 GA-ASI-manufactured aircraft were airborne at some point during the day, including Predator A, Predator B/MQ-9 Reaper, Predator C Avenger, Gray Eagle, and Sky Warrior Alpha aircraft. Flight hours have continued to grow at unprecedented rates in recent years, with 500,000 flight hours achieved from 1993 to 2008, one million hours two years later in 2010, and two million hours just two years later in 2012. Over the course of the last one million flight hours, GA-ASI has added substantial value to its aircraft family by making long endurance a key focus. In October 2013, Improved Gray Eagle (IGE), a next-generation derivative of the combat-proven Block 1 Gray Eagle unmanned aircraft system, completed its first endurance flight, flying over 45 hours. It is anticipated, with additional fuel, the IGE will have the potential to achieve more than 50 hours. This past June, Predator B Extended Range (ER), an advanced derivative of the mission-proven Predator B/ RPA, conducted its inaugural long-range endurance flight, extending the aircraft's endurance from 27 to 34 hours.  With additional fuel in the ER wings, the RPA soon will evolve to deliver 42 hours. Also in June, Predator XP, an updated version of the flagship Predator RPA that has been licensed for sale by the U.S. Government to a broader customer base, executed its first flight, offering up to 35 hours endurance. "Customer demand for Predator/Gray Eagle-series aircraft continues to accelerate flight hours amassed, and it's very timely for us to announce this milestone at the Army's largest trade show of the year as Gray Eagle was a significant contributor to this achievement," said Frank W. Pace, president, Aircraft Systems, GA-ASI. "At the same time, technology advances such as increased endurance are driven by customer input and supported by an exceptional team of partners, suppliers, and employees." GA-ASI aircraft are currently logging nearly 50,000 flight hours a month supporting the U.S. Air Force, U.S. Army, U.S. Department of Homeland Security, NASA, the Italian Air Force, the Royal Air Force, the French Air Force, and other customers. Missions include helping protect warfighters in world hot spots; assisting border agents in monitoring the nation's borders; aiding first responders in the wake of natural disasters; and supporting scientists in performing Earth science missions. These aircraft continue to maintain the highest operational availability rates not only in U.S. Air Force and U.S. Army aviation, but also in the U.K. inventory. GA-ASI has produced some 700 aircraft to date and is currently building six aircraft and two ground control stations (GCS) per month, with the capacity to double production if needed. General Atomics Aeronautical Systems, Inc., an affiliate of General Atomics, delivers situational awareness by providing remotely piloted aircraft systems, radars, and electro-optic and related mission systems solutions for military and commercial applications worldwide. The company's Aircraft Systems business unit is a leading designer and manufacturer of proven, reliable, RPA systems, including Predator A, Predator B/MQ-9 Reaper, Gray Eagle, the new Predator C Avenger, and Predator XP. -ends-
13/10/2014

Drones Are the IED of the Next War

They are cheap, readily constructed from items lying around the garage and gardening shed, come in every imaginable shape and size and can be triggered in a myriad of ways. I am referring to improvised explosive devices or IEDs. This was the one tactical threat the U.S. didn’t plan for when it went into Iraq and Afghanistan and it nearly lost us the war. It cost the military and local civilians dearly in terms of lives, lost and individuals injured, often horribly. Responding to the IED threat also cost this country tens of billions of dollars to design and acquire fleets of specially-armored and protected vehicles, electronic jamming systems, advanced sensors and robots. The Pentagon stood up an entirely new command, the Joint IED Defeat Organization, just to combat this threat. In the next insurgency, U.S. and coalition forces could find themselves facing a new equally dangerous and disruptive threat: unmanned aerial vehicles (UAVs), often called drones. I am not referring to the large, high-flying, long-range and sophisticated unpiloted aerial vehicles such as the U.S. Reaper or Global Hawk or the Israel Heron. Rather, I am speaking of relatively small and very simple drones that would fly low, have limited range and carry a payload measured in pounds. In its recent conflicts, the U.S. military deployed several highly effective small UAVs that were built out of plastic parts, employed commercially available sensor systems and avionics and whose launch and recovery systems were constructed from parts available at Home Depot. To date, there have been relatively few cases of other countries and, more important, non-state actors, employing drones. But they are coming. All the relevant technologies are proliferated around the world. The airframe can be made from cheap materials. They can be powered by battery-driven electric motors found in gardening implements. They need no better guidance system than the GPS that can be found in the average cell phone. But if you want command guidance you can get a small video camera almost anywhere and route the feed through that same cell phone connected to the local communications network. They can be built in a garage and launched from the driveway. The proliferation of drones could radically alter the tactical battle space. For the first time, non-state adversaries would have an air force. Obviously, if they were equipped with cameras, drones could provide terrorists and insurgents with critical intelligence and targeting information. Loaded with even a few pounds of explosives, drones are precision-guided weapons able to be used against fixed and even mobile targets, something our adversaries lack in their current inventories of rockets and missiles. Deployed on ships, drones would provide our adversaries with a low-cost “aircraft carrier.” Small drones pose three distinct challenges to advanced militaries different than either manned aircraft or missiles. The first is the engagement envelope. Because these drones are small, fly low and are very quiet, they would be difficult to detect and engage with existing air defense systems. There might be no warning of an attack. Missile defenses would be equally ineffective. The second challenge drones pose is to the defenses’ magazines. Simply put, the defense is more likely to run out of interceptors before the insurgents run out of drones. If drones were employed in swarming attacks, the defense might not be able to shoot fast them down enough, even if it has the right number of interceptors, to stop the attack. The third challenge, possibly the most difficult, is the cost-exchange ratio between cheap drones and relatively expensive defensive weapons. We have known for a long time that it was prohibitively expensive to buy enough conventional interceptor missiles to shoot down all incoming rockets and ballistic missiles. The key to the very successful Israeli Iron Dome defense is that it only engages those weapons that are heading for populated areas or infrastructure targets. An attack by drones employing advanced guidance systems would require the defense to intercept all the inbound UAVs. The cost-exchange ratio would be prohibitively expensive. The U.S. military, in general, but the Army, in particular, needs to accept the reality that this threat is coming, and get in front of it. This means dealing with all three of the challenges posed by small, low flying drones. First, new sensors, probably airborne or on aerostats, are needed in order to allow existing systems such as the Navy’s Close in Weapons System or machine guns to be effective. Second, new weapons are needed in order to increase ammunition stocks and reverse the cost exchange ratio. This means tactical lasers or microwave weapons. The Army has a tactical laser demonstrator program that has demonstrated real effectiveness against drones. Finally, a combination of electronic warfare and passive defenses will be required to defeat the drones’ sensors and guidance systems. Make no mistake, this threat is coming. The recent conflict in Gaza taught the world’s terrorists and insurgents about the limited utility of even massive arsenals of unguided rockets and missiles. They will be looking for an alternative weapon. All the components needed to build a small, precision-guided, weaponized drone are available at ISIS’s equivalent of Radio Shack. -ends-
10/10/2014

Oil Leak Caused Jalalabad Predator Crash

LANGLEY AFB, Va. --- An oil leak led to an MQ-1 B Predator crash near Jalalabad Airfield, Afghanistan, Apr. 26, 2014, according to an Air Combat Command abbreviated accident investigation board report released today. The aircraft and its aircrew were assigned to the 214th Reconnaissance Squadron at Davis-Monthan AFB, Ariz. At the time of the mishap, the aircraft was conducting an intelligence, surveillance and reconnaissance mission. The aircraft was destroyed on impact with a loss valued at approximately $4.61 million. There were no injuries or damage to private property. The board president found by clear and convincing evidence that the cause of the mishap was an engine oil leak. The rapid rate at which the oil leaked out ultimately caused the Predator's engine to completely seize, resulting in the aircraft's inability to maintain altitude or return to base. No portion of the wreckage was recovered. -ends-
09/10/2014

Italian Reaper UAVs Deploy to Djibouti

As of August 6, Task Group Atlas was absorbed by Task Force Air Djibouti, and as a result redeployed to Djibouti, and now operates from Chabelley airfield (where US UAVs also are now based--Ed) On September 22, the group reached Full Operational Capability (FOC) as part of the operation combating piracy along the Somali coast and in the Gulf of Aden, christened "Operation Atalanta". The MQ-1 Predator has been used since the early days of their redeployment in synergy with the other redeployed forces. During this period, the system carried out a series of missions in support of Operation EUNAVFOR, all of which were completed successfully. "I congratulate the Italian Air Force team which attained Full Operational Capability with their Predator aircraft. I know that a lot of hard work was required from the team, which also included coordinating with the Djibouti authorities as well as other local partners,” said Brigadier General Dick Swijgman, Deputy Operation Commander of the EU Naval Force. "In the coming months, the remotely-piloted aircraft will be used to monitor the coast of Somalia, where pirates have operated, and the unit will be tasked with alerting competent authorities in case of possible attacks.” “As is the case for naval surface vessels and MPRA (Maritime Patrol and Reconnaissance Aircraft), these remotely-piloted aircraft can also be used to safeguard cargo ships belonging to the World Food Programme as they transit through the Indian Ocean." -ends-

Analysis and Background

see all items

11/07/2014

UK, France to Launch FCAS Demo Phase

PARIS --- Four years after they first agreed to jointly develop an unmanned combat aircraft, France and Britain will finally launch the demonstration phase of the Future Combat Air System (FCAS) on July 15 at the Farnborough air show, the French defense ministry announced July 10. The two countries’ defense ministers will sign a Memorandum of Understanding (MoU) authorizing a 24-month, €150 million definition phase of the FCAS program, known as FCAS-Demonstration Phase, the French defense ministry announced July 10. Contracts will be awarded to industry in the autumn, and the project will officially begin in January 2015. Participating companies are Dassault Aviation and BAE Systems for airframe and systems integration; Thales and Selex ES (UK) for sensors and electronics; and Snecma and Rolls-Royce for engine and power systems. “There is agreement on a two-year concept phase…[and]….a contract could be awarded shortly,” UK Defence Procurement Minister Philip Dunne told reporters at the Eurosatory show here June 19, adding however that “data-sharing agreements have to be competed.” Physics and aerodynamics being what they are, it is not surprising that Dassault’s Neuron demonstrator (above) and BAE System’s Taranis demonstrator (below) should look the same at first glance. The FCAS will build on knowledge gained on both programs. (photos Dassault and BAE). BAE and Dassault have been working together for about 18 months to investigate the feasibility of joint development of FCAS, based on their separate but complementary experience in developing unmanned combat air vehicle (UCAV) demonstrators, either alone (BAE with its Taranis) or jointly – Dassault’s Neuron project also included Italy’s Alenia Aermacchi, Sweden’s Saab as well as smaller Greek and Spanish firms. A major question mark concerns the work-sharing arrangements, as both companies are obviously keen to advance and maintain their technological know-how. This is complicated, again, by their previous work on Taranis and Neuron, which sometimes led them in different directions and which may be difficult to reconcile. “We have already shared some data, but we haven’t shown everything yet,” Benoît Dussaugey, Dassault Executive Vice-President, International, told Defense-Aerospace.com June 18, adding that full disclosure will not take place before contract award. However, having successfully managed Neuron on time and on schedule with an international team of partners, Dassault does not believe this aspect will be a show-stopper. "We are confident we will find an agreement with our partners on work-share, subject to sovereign decisions by governments," Dussaugey said. The program could be opened to additional foreign partners, he adds, on two conditions: "that everyone accepts and respects our common rules, and that the respective governments finance [their share] of the entire phase." Nonetheless, BAE’s surprise and high-profile unveiling of its Taranis UCAV demonstrator in January, which it had jealously kept under wraps until then, was clearly intended to show its credentials in the lead-up to the FCAS MoU. It is probable that, as in the previous phase, BAE will remain FCAS prime contractor, while France’s defense procurement agency, Direction Générale pour l’Armement (DGA), will act as program executive on behalf of both nations. Having successive definition and demonstration phases is considered essential for governments to define and harmonize their operational requirements, and for industry to weigh their technical feasibility and cost implications. For example, will in-flight refueling be required, and if yes using a receptacle or a boom? Where and how should radar antennas be integrated into the airframe? Will FCAS be designed to follow a pre-programmed flight path (which the French favor, as it is impervious to jamming, interception and loss of data-link), or on the contrary be remotely-piloted, as the Royal Air Force favors so as to keep a man permanently in the loop? Should the aircraft be totally silent in terms of radar, radio and IR emissions, or could it resort to jamming? Should it be single- or twin-engined? Once these basic questions are answered, processed and priced by industry, the logical follow-up would be a demonstration phase, during which the project would be further developed and prototypes or flight test aircraft built, but a decision would not be required before late 2017, which makes it very unlikely that a FCAS could fly before the end of the decade. -ends-
30/04/2014

USAF Vision & Plans for UAVs 2013-2038

Source: US Air Force Ref: no reference Issued April 04, 2014) 101 PDF pages Air Force leaders outlined what the next 25 years for remotely piloted aircraft will look like in the RPA Vector, published April 4. “The RPA Vector is the Air Force’s vision for the next 25 years for remotely-piloted aircraft,” said Col. Kenneth Callahan, the RPA capabilities division director. “It shows the current state of the program, the great advances of where we have been and the vision of where we are going.” The goal for the vector on the operational side is to continue the legacy Airmen created in the RPA field. The vector is also designed to expand upon leaps in technology and changes the Airmen have made through the early years of the program. “The Airmen have made it all about supporting the men and women on the ground,” Callahan said. “I couldn’t be more proud of them for their own advances in technology to expand the program, making it a top platform.” The document gives private corporations an outlook on the capabilities the Air Force wants to have in the future, ranging from creation of new RPAs to possibilities of automated refueling systems. “There is so much more that can be done with RPAs,” said Col. Sean Harrington, an intelligence, surveillance, and reconnaissance command and control requirements chief. “Their roles (RPAs) within the Air Force are evolving. We have been able to modify RPAs as a plug-and-play capability while looking to expand those opportunities.” In recent years, RPAs not only supported the warfighter on the ground, they also played a vital role in humanitarian missions around the world. They provided real time imagery and video after the earthquake that led to a tsunami in Japan in 2011 and the earthquake in Haiti in 2010, according to Callahan. Then, most recently, during the California Rim Fire in August 2013, more than 160,000 acres of land were destroyed. Though this loss was significant, it was substantially decreased by the support of the California Air National Guard’s 163rd Reconnaissance Wing, with support from an MQ-1 Predator, a remotely piloted aircraft. With this vector, technologies may be created to improve those capabilities while supporting different humanitarian efforts, allowing the Air Force to support natural disaster events more effectively and timely. The future of the Air Force’s RPA programs will be continuously evolving, to allow the Air Force to be the leader in Air, Space, and Cyberspace. “We already combine our air, space and cyber forces to maximize these enduring contributions, but the way we execute must continually evolve as we strive to increase our asymmetric advantage,” said Gen. Mark Welsh, the Air Force chief of staff. “Our Airmen's ability to rethink the battle while incorporating new technologies will improve the varied ways our Air Force accomplishes its missions.” (PDF format) Full text
07/03/2014

Airbus Plots Return to UAV Market

MADRID --- Airbus Defense and Space is preparing to return to the UAV market, three years after it was forced out by the reluctance of the French and German governments to financially support any of the unmanned aircraft projects which it had developed. “We are revisiting our strategy on unmanned aerial vehicles with a vision to leadership,” Antonio Rodríguez Barberán, Head of Military Aircraft sales at Airbus Defence and Space, told Defense-Aerospace.com. “We are planning to be there, even if it takes some years.” This is a major shift in company policy, as Airbus Group decided in 2011 to freeze its UAV activities after having invested over 500 million euros in several programs without having convinced its domestic customers that they were worth supporting. Corporate strategy, at the time, was to sit out until European governments decided which programs, and which companies, they would support. This approach was not very successful, however, as Airbus was frozen out of two major market segments: Medium Altitude Long Endurance (MALE), where France preferred buying Reaper unmanned aircraft from the United States, with Germany and the Netherlands to follow shortly, and the High Altitude Lone Endurance (HALE) segment, where its EuroHawk program was abruptly cancelled by the Germen government because of cost and regulatory failings. The company was left with only smaller UAVs, a segment where competition is rife and margins small. Airbus has now changed tack because “it’s time for a proper aircraft manufacturer to get involved, to certify UAVs to civilian standards – and I mean FAR 23 and FAR 25 – so they can be used in unsegregated airspace,” Rodriguez said. At present, UAVs can only be used in segregated airspace, under military air regulations, and so are severely limited in their operational usefulness. While it has no immediate plans to resume large-scale investments in the UAV sector, Airbus DS does not see financing as a major obstacle. “We know there is a market, and if there is a market there is money,” Rodriguez said. He adds that for Airbus this is a decade-long project, which will eventually bring it a leading role: “Airbus is not here to be a subcontractor,” he says, making clear that the company is not aiming for a subordinate role in ongoing European UAV programs. While waiting for the MALE market to mature, and for the dust to settle in the combat UAV (UCAV) segment, Airbus is finalizing development of its own tactical UAV, Atlante, which is significantly smaller than the MALE and HALE segments it previously pursued. Weighing about 550 kg, Atlante has been developed in Spain, and from the outset the goal has been to fly in segregated civilian airspace, i.e. over populated areas, and it is intended to be certified for that operational environment. “The key word here is ‘certification’,” Rodriguez says, adding that, of course, “it has to offer value for money.” Atlante first flew in February 2013, Light Transport Aircraft Sector Gliding Along While its UAV strategy matures, Airbus DS continues to improve its transport aircraft product line. It recently agreed with Indonesian partner IPT Nurtanio, also known as Indonesian Aerospace, to develop a modernized version of the C-212 light twin turboprop transport, and it also is refining the performance of the C-295, its very successful medium twin. Most of the effort is on refining the airframe design, for example by adding wingtip extensions, and on increasing engine power ratings, which together add 1,000 ft. to the aircraft’s ceiling in One Engine Inoperative (OEI) conditions. The C295’s Pratt & Whitney engines are already at their power limit, so they have no more growth potential, so these refinements, together with a major upgrade of the aircraft’s avionics, will suffice to keep them competitive for years to come, says Rodriguez. The avionics upgrade will make it easier for the aircraft to operate in a civil environment. A new design may well be necessary in 10 or 15 years, he adds, but for now it is still very premature. The current line-up is quite profitable for the company, and currently accounts for average sales of about 20 aircraft per year, worth about 700-800 million euros including 100-150 million euros for related services. Over the past 10 years, Airbus has sold 157 of the 306 light/medium turboprops sold world-wide, and so has a market share of over 50%, and this should increase as additional orders will be announced this year, one of them “by Easter.” Compared to the Alenia C-27J Spartan, its direct competitor, the C-295 is simple, offers substantially lower fuel costs and “can be maintained with a hammer and a screwdriver,” Rodriguez says. Specifically, he says that maintenance costs are 35% lower, fuel consumption is 50% lower and, in terms of life-cycle costs, “it can save one million euros per plane, per year.” -ends-
03/03/2014

US Unmanned Vehicle Roadmap, FY2013-38

Source: U.S Department of Defense Ref: 14-S-0553 Issued December 26, 2013 168 PDF pages Strategy and budget realities are two aspects of the Defense Department's new Unmanned Systems Integrated Roadmap, released Dec. 23. The report to Congress is an attempt to chart how unmanned systems fit into the defense of the nation. "The 2013 Unmanned Systems Integrated Roadmap articulates a vision and strategy for the continued development, production, test, training, operation and sustainment of unmanned systems technology across DOD," said Dyke Weatherington, the director of the unmanned warfare and intelligence, surveillance and reconnaissance office at the Pentagon. "This road map establishes a technological vision for the next 25 years and outlines the actions and technologies for DOD and industry to pursue intelligently, and affordably align with this vision," he continued. Unmanned aerial vehicles have received the most press, but unmanned underwater vehicles and ground vehicles are also providing warfighters with incredible capabilities. Although unmanned vehicles have proved their worth in combat operations throughout the Middle East and Central Asia, current technologies must be expanded and integrated into the sinews of the defense establishment, the report says. It also calls for unmanned systems to be programs of record in order to achieve "the levels of effectiveness, efficiency, affordability, commonality, interoperability, integration and other key parameters needed to meet future operational requirements." (PDF format) Full text
31/01/2014

Was Watchkeeper Grounded for 3 Months?

PARIS --- The service introduction of Watchkeeper, the tactical UAV that has been in development for the British Army since 2005, may be further delayed due to unidentified technical issues that appear to have grounded the aircraft for three months in late 2013. The Watchkeeper program apparently logged no flight activity between mid-September and mid-January, according to data provided by Thales, the program’s main contractor, which showed that the number of total flight hours and total sorties barely changed between Sept. 16, 2013 and Jan 12, 2014. As of Sept. 16, Watchkeeper had flown “almost 600 sorties, for a total of about 1,000 flight hours,” a Thales spokesperson told Defense-Aerospace.com in an e-mail follow-up to an interview at the DSEi show in London. On Jan. 20, responding to a follow-up query, the Thales spokesperson said that “Tests are progressing nominally, as planned. We have now passed 600 sorties and are nearing 1,000 flight hours.” These figures show no flight activity between mid-September and mid-January. Asked to explain this apparent discrepancy, the Thales spokesperson had not responded by our deadline, three days later. “The delivery of Watchkeeper equipment is on track and trials are continuing with over 550 hours flying having been completed,” the UK Ministry of Defence in a Jan 31 e-mail statement. Note this is about half the flight hour figure provided by Thales. “…the Release to Service process is taking longer than expected,” the MoD statement continued, adding that “The last flight was last week, so it’s incorrect to say that the assets are still grounded.” This unannounced grounding may be one reason why the French Ministry of Defense is back-pedaling on earlier promises to consider buying the Watchkeeper, after an inconclusive evaluation between April and July 2013 by the French army. The evaluation included “several dozen flight hours” from Istres, the French air force’s flight test center in south-eastern France, a French MoD spokesman said Jan. 31. The evaluation report has not been completed, and no date has been set, he added. The final communiqué of today’s Anglo-French summit meeting, for the first time since November 2010, makes no mention of the Watchkeeper, although it was mentioned in passing by French President François Hollande during the summit press conference. Thales’ figures on Watchkeeper flight activities have also been provided to other news outlets. A Jan. 16 article by FlightGlobal quotes Nick Miller, Thales UK’s business director for ISTAR and UAV systems, as saying that “Watchkeeper aircraft have now completed more than 600 flights, exceeding a combined 950 flight hours.” Aviation Week had posted an article the previous day, Jan. 15, in which it reported that “Thales U.K….is continuing flight trials and supports army training(Emphasis added—Ed.). However, it is difficult to understand how training can take place without an increase in the number of sorties and flight hours. The above article says “Watchkeeper may début in spring,” echoing a similar story published Sept. 12, 2013 in which Aviation Week said Thales UK “is hopeful that …Watchkeeper…will be certified by the end of the year.” This did not happen. This same Aviation Week Sept. 12 story said that the Watchkeeper “fleet has flown more than 1,000 hr. over 600 flights” – a higher figure than FlightGlobal reported on Jan. 16, four months later. The discrepancies in the figures provided to at least three trade publications clearly contradict company statements that Watchkeeper flight operations are “nominal” and “are continuing,” as they show no flight activity has been logged since September. The obvious conclusion is that flight activities have been curtailed, either by a technical grounding or because of administrative blockages. In either case, Watchkeeper – which is already over three years late -- has clearly hit new obstacles that will further delay its operational clearance by the UK Ministry of Defence’s new Military Aviation Authority (MAA). Watchkeeper is being developed by UAV Tactical Systems (U-TacS), a joint venture between Israel’s Elbit Systems (51% share) and Thales UK, the British unit of France’s Thales, under a contract awarded in 2005. UAV Engines Ltd, which builds Watchkeeper’s engine in the UK, is a wholly-owned subsidiary of Elbit Systems. Originally valued at £700 million, the cost has escalated to over £850 million, and service introduction has been delayed by at least three years. The British Army is due to receive a total of 54 Watchkeeper unmanned aircraft and 15 ground stations. By late 2013, 26 aircraft and 14 ground stations had been delivered, according to published reports. -ends-
30/01/2014

France, UK to Launch Anti-ship Missile, UAV Projects

PARIS --- France and Britain are due to sign several defense-related agreements during their short Jan. 31 summit meeting at Brize Norton, England, including one to launch joint development of a next-generation anti-ship missile and another to fund a two-year feasibility study for a joint combat UAV. British and French officials have widely briefed the media in advance of the summit to obtain the editorial coverage that both countries’ leaders – British Prime Minister David Cameron and French President François Hollande – need to bolster their domestic standing. The briefings also seek to highlight that, after several fruitless summits in the past three years, the two countries are finally making progress on the joint defense projects to which they subscribed in the 2010 Lancaster House treaty. The two countries are expected to launch the long-delayed development of a lightweight helicopter-launched anti-ship guided missile known as FASGW(H) in the UK and ANL (Anti-Navires Léger) in France. Originally due to be launched in 2011, this program is now expected to be funded under a €500 million (or £500 million – accounts differ) contract to be awarded to MBDA, a joint subsidiary of BAE Systems, Airbus Defense & Space and Italy’s Finmeccanica. The Financial Times reported Jan 29 that the cost would be shared evenly, but that Britain will provide initial funding because it needs the missile earlier. It is not expected that the summit will launch other missile projects also long in the pipeline, such as the joint upgrade of the Scalp/Storm Shadow cruise missile and a joint technology roadmap for short range air defence technologies. UCAV feasibility study The second major decision that could be announced Jan. 31, sources say, is the launch of a two-year feasibility study for a joint Unmanned Combat Air Vehicle (UCAV), with a contract to be awarded jointly to BAE Systems and Dassault Aviation, which last year completed a 15-month risk reduction study. This project has barely inched forward since 2010, when it was first mooted, but Rolls-Royce and Safran have agreed to cooperate on the aircraft’s engines, and Thales and Selex ES on its electronics, Defense News reported Jan. 28, such is the eagerness to launch a funded program before design know-how evaporates. The two governments must also decide whether, and at what stage, to open this project to other European partners, such as Italy’s Alenia Aermacchi, Sweden’s Saab and the Airbus Group (formerly EADS), which have developed or are studying their own aircraft but lack government funding. Little concrete progress is expected at the summit, however, on other unmanned aircraft projects under discussion. One is France’s possible buy of the Watchkeeper tactical drone, developed for the British Army by Thales UK, and which is running several years late. Although France has said several times that it was interested in buying it and allow “cooperation on technical, support, operational and development of doctrine and concepts,” it seems that its operational evaluation by the French Army’s 61st Artillery Regiment was not conclusively positive. Another project is the long-running saga of a European medium-altitude, long-endurance (MALE) UAV intended to ultimately replace the US-supplied Predator UAVs currently operated by both countries, as well as Italy, and soon to be bought by Germany and the Netherlands. To date, this project has received little in the way of government funding, and it is this lack of serious money, combined with the lack of clear military requirements, that industry says is curtailing its ability to address Europe’s UAV needs. Minehunters and armored vehicles The two countries are also expected to launch the joint development of an autonomous underwater vehicle to replace the remote-controlled robots used by their navies’ minehunters. Finally, France may announce it will loan about 20 VBCI wheeled combat vehicles to the British Army, which currently lacks a vehicle of this kind, the Paris daily “Les Echos” reported Jan. 27. This is intended to allow the British, who are said to have been impressed by the VBCI’s performance in Afghanistan and Mali, to evaluate it before they begin procurement of similar heavy wheeled armored vehicles in 2017. -ends-
27/01/2014

US Navy’s Mabus on Unmanned Naval Ops

This past summer, Chief of Naval Operations Jonathan Greenert and I stood on the flight deck of the aircraft carrier George H.W. Bush, at sea off the coast of Virginia. We watched as the X-47B unmanned aircraft, a sixty-two foot wingspan demonstrator, made its first arrested landing onboard an aircraft carrier. It was a historic moment for naval aviation. Every Naval Aviator knows landing on an aircraft carrier is about the most difficult thing you can do as a pilot. Recovering the X-47B safely aboard the ship, with the autonomous system landing independent of its human operators, was a vital step toward our future vision of a Carrier Air Wing. In less than a decade, this future air wing will be made up of today’s F/A-18 Super Hornet strike fighters, MH-60 Seahawk helicopters, and advanced future platforms like the F-35C Lightning II Joint Strike Fighter and our next generation unmanned carrier aircraft. The U.S. Navy and Marine Corps are America’s “Away Team.” We provide presence. We are where it counts when it counts, not just at the right time but all the time. We give the President and Combatant Commanders the flexibility they need to respond to any challenge. The platforms we buy to make up our fleet are an important part of our future. Unmanned systems are vital to our ability to be present; they lessen the risk to our Sailors and Marines and allow us to conduct missions that are longer, go farther, and take us beyond the physical limits of pilots and crews. Launching and recovering unmanned aircraft as large and capable as our manned fighters from the rolling decks of aircraft carriers is just one element of the future of maritime presence and naval warfare. Helos Leading the Way While we are designing and testing our fixed wing unmanned aircraft, some of our helicopter squadrons have been operating unmanned systems – both in combat and maritime security operations – for years. The MQ-8B Fire Scout is our current unmanned helicopter system. It has been conducting missions including patrolling against illicit trafficking in the Pacific, counter-piracy operations in the Indian Ocean, and combat operations in Afghanistan and Libya. Since the Fire Scout’s first deployments in 2009 our ships, helicopter squadrons, and Marine Corps units have been working together to refine and expand how we use the platform. The next generation Fire Scout, the MQ-8C with its greater payload and longer range, made its first flight last year. It will deploy in support of our Littoral Combat Ships and Special Operations units. In the past year, we have stood up our first two Fire Scout squadrons in San Diego to train and organize the operators and maintainers who will work on these aircraft. Meanwhile the Marines continue to experiment and operate with the Cargo Resupply Unmanned Aerial System (CRUAS) which carries cargo to patrol bases and forward operating bases in combat areas such as Afghanistan, eliminating the need for dangerous convoys and potentially saving lives. Under, On & Over the Sea The future of unmanned systems in the Navy and Marine Corps is focused on incorporating our people on manned platforms with unmanned systems to create an integrated force. A good example of this integration is the Mine Countermeasures Mission Module we are testing for the Littoral Combat Ship. This module includes a small remotely controlled submarine which tows a mine-hunting sonar to detect the mines, paired with a manned Seahawk helicopter which neutralizes the mines once they are found. The development team is also working with unmanned surface and air systems for autonomous mine sweeping, shallow water mine interdiction, and beach mine clearance. Nobody can argue with the idea that when clearing mines we should keep our Sailors out of the mine fields and let our unmanned systems take those risks. Last spring we had the first test flight of the MQ-4 Triton unmanned maritime patrol aircraft, and earlier this month it passed the half-way point in its flight testing. Its 131-foot wingspan – 30 feet wider than the manned P-3C Orion maritime patrol planes we have flown for decades – makes it today’s largest unmanned platform. Triton’s long, slender wings allow it to stay in the air with its sensors for a day at time, providing persistent maritime coverage to the warfighter. Combined with the aircrews and operators aboard our new P-8 Poseidon manned maritime patrol aircraft, Triton will identify and track targets as necessary, ensuring that the fleet has a complete picture of what is happening at sea. The Future Airwing The X-47B is the culmination of an experimental program to prove that unmanned systems can launch and recover from the aircraft carrier. The program that follows this demonstrator will radically change the way presence and combat power is delivered as an integral part of the future carrier air wing. Known by the acronym UCLASS, for Unmanned Carrier Launched Airborne Surveillance and Strike system, it will conduct its missions over very long periods of time and at extreme distances while contributing to a wide variety of missions. It will make the carrier strike group more lethal, effective, and survivable. The end state is an autonomous aircraft capable of precision strike in a contested environment, and it is expected to grow and expand its missions so that it is capable of extended range intelligence, surveillance and reconnaissance, electronic warfare, tanking, and maritime domain awareness. It will be a warfighting machine that complements and enhances the capabilities already resident in our carrier strike groups. Operating these platforms independently of a pilot, and with growing autonomy, greatly increases the possibilities for what we can do with them in the future. Unmanned carrier aircraft don’t require flights to maintain pilot proficiency; the operators can maintain their skills in the simulator. The planes will be employed only for operational missions, saving fuel costs and extending the service life of the aircraft. They also create the opportunity to advance new ways to use our aircraft, like developing new concepts for swarm tactics. We are finalizing the requirements that will lead to a design for the UCLASS. We aren’t building them yet. We want to ensure we get the requirements and design set right before we start production in order to avoid the mistakes and cost overruns which have plagued some past programs. Meanwhile our other unmanned systems like the Fire Scout and Triton continue their success. The Future of Naval Operations Across the entire spectrum of military operations, an integrated force of manned and unmanned platforms is the future. The X-47B’s arrested landing aboard USS GEORGE H.W. BUSH showed that the Navy and Marine Corps are riding the bow wave of technological advances to create this 21st century force. But it is our Sailors and Marines that will provide the innovative thinking and develop the new ideas that are crucial to our success. The unmanned systems and platforms we are developing today, and our integrated manned and unmanned employment methods, will become a central part of the Navy and Marine Corps of tomorrow. They will help ensure we continue to be the most powerful expeditionary fighting force the world has ever known. About the author: Ray Mabus is the 75th Secretary of the Navy, leading the U.S. Navy and Marine Corps. He has served as Governor of the State of Mississippi, Ambassador to the Kingdom of Saudi Arabia, and as a surface warfare officer aboard USS Little Rock (CLG-4). -ends-
12/11/2013

A Short History of US Air Force Drone Operations

LAS VEGAS, Nev. --- The RPA actually got its start as early as 1896, when something called aerodromes at the time, were used to test the capabilities of new flying devices and to test if it was even possible for a heavier-than-air craft to achieve sustained flight. In May 1896, Dr. Samuel Langley proved that mechanical flight was possible with his Aerodrome No. 5. From that point on, the shape, design and technology structure of the unmanned aircraft evolved over the years, improving each time. In 1918, the U.S. Army became interested in unmanned flight and ordered 25 Liberty Eagle aircraft. The intent was for the aircraft to be used as an aerial torpedo. Just over two decades later in 1941, the OQ-2 Radioplane became the first mass-produced unmanned aerial vehicle. By 1945, only a few years later, radioplane factories had produced around 15,000 aircraft for use as target drones. Since achieving the first sustained controlled flight, the idea of unmanned flight has grown to be one of the most useful aircraft technology systems in modern history. Today, RPAs have transformed from a basic tool into high-tech machines, providing assistance during both humanitarian and war time situations. 1990s - 2000: In January 1994, more than half a century after the advent of the first mass-produced UAV, the Air Force's modern-day remotely piloted aircraft program was born. General Atomics Aeronautical Systems, Inc. received an advanced concept technology demonstration contract to produce a medium altitude endurance "unmanned" aerial vehicle. This new system would be called the RQ-1 Predator and would be based off its precursor the GNAT 750, which initially debuted in 1989 and was used for long-endurance tactical surveillance. A mere six months after the contract was established, the new aircraft achieved its first flight in July 1994. While the flight was a success, the Air Force then had to bring in military pilots, navigator-trained rated officers and non-rated officers to learn to use the new technology. "I was the first person to receive a permanent change of station and the ninth person to actually enter into the program," said Lt. Col. Eric, 432nd Wing Director of Staff. "I came in short notice in November of 1995 from Cannon Air Force Base, N.M. In May 1996 I went to ground school in San Diego at the General Atomics headquarters. Afterward, I went to flight training at Fort Huachuca, Ariz., where the Army had the only system in the states at the time." John Box, a retired Air Force pilot, trained to become an RPA pilot in June 1996. He said because the system wasn't produced by the Air Force, the new equipment did not come with technical orders, making the task of learning how to use the system rather challenging. "Much of what we learned was by word of mouth from our instructors and not delivered in a military format," he said. "That took an adjustment and I found it frustrating and challenging but very exciting. I often had to deal with emergency situations that no one had ever before encountered. Every time I flew the system, I learned something new. We were developing books and adding new information to them daily. I wasn't trained for this type of work. Others may have got us started off on a better foot, but I believed in the concept and was committed to making it happen as best I could. It was a 'cowboy' atmosphere and I really enjoyed it." By 1995 it was decided that the Predator's capabilities were needed to aid U.N. and NATO efforts in Europe. The Predator and Air Force personnel were deployed to Taszar, Hungary, to provide support from 1995 until August 1998. Eric deployed to Hungary in August 1996 after completing training. It was during this deployment that he felt the continued challenges of integrating a new form of air power into the Air Force's inventory. "There were two Air Force pilots and a General Atomics instructor pilot with us ... only the three of us to accomplish the mission," he said. "There were no publications, technical orders, regulations or guidance that we hadn't created ourselves. We had to rewrite the very first technical orders that we were given and put them into Air Force terminology." Eric said maintainers were also dealing with some of the same issues as the pilots - learning by observation. "The General Atomics technician was there saying 'here's how we do the 50-hour engine inspection,' and our guys were watching him do it," he said. "But there were no publications or technical orders to break down the process of actually doing it. It took almost three years before we actually started getting valid technical orders on the systems, and it was the same the guidance and everything else. Today we are used to having regulations outlining how people do their jobs and laying down boundaries--we didn't have those." In October 1996 Eric found himself testing new waters for the Predator while facing the challenges of learning new technology and not having Air Force publications or technical orders to break down the processes. "On Oct. 1, 1996, during my deployment, I got the dubious distinction of being the first person in the military to be investigated for a safety investigation board for crashing a remotely piloted airplane," he said "At the time I was doing everything I could to save the airplane. That was my first and foremost concern, but because we didn't have any resources to help us, we kind of made it up as we went. We actually had a General Atomics engineer in the ground control station with us. We said, 'what if we try this?' and he would reply, 'well I don't know we've never tested that before.' We just didn't have any other choices so we were doing it the best that we could." In the end it was determined the crash occurred because the engine had been incorrectly rebuilt. Although the incident resulted in the loss of an aircraft, Eric said it was a learning experience. "We didn't have any publications to follow and we lost an airplane because of it," he said. "But, we learned a lot from it ... we were pioneers on the leading edge of this system making Air Force leaders understand what kind of capabilities this thing had, what we could do with it, and how to move forward with it." It was during this time when Eric and John were learning to fly the Predator that James Clark, at the time an Air Force colonel assigned to the Pentagon, was chosen by Gen. Ronald Fogleman, Chief of Staff, U.S. Air Force, to examine Predator operations. Clark, who is known as "Snake" by many, was chosen because he had no experience with RPAs. Fogleman wanted someone with an outsider's perspective. "What I found [during my study] was remarkable," he said. "This little drone could fly hundreds of miles away and provide color television and infrared video surveillance of enemy activity, without risking the life of a pilot. In a control van, which was a converted NASCAR transporter trailer, I watched pilots and sensor operations sitting in front of computer screens actually flying this thing - simply remarkable." While Snake was studying Predator operations in D.C., and pilots, mechanics and other RPA community members were providing assistance in deployed locations, Creech Air Force Base, Nev., was continuing to be built up in order to become home to the Air Force's premier RPA wing. The 11th Reconnaissance Squadron was the first squadron to stand up at Creech AFB. This milestone also marked the point when the Air Force RPA program's dynamic objectives took on a new strategic focus. After the squadron stood up the 11th RS deployed members to support Detachment 3, which was under Defense Advanced Research Projects Agency. "While deployed we were Detachment 3 under DARPA," Eric said. "When the Air Force took over we became the 11th Reconnaissance Squadron deployed; then once the Air Force turned to the expeditionary concept, [the squadron] became the 11th Expeditionary Reconnaissance Squadron. I was actually the first formal commander of the 11th ERS when it stood up. While the 11th ERS was deployed and redefining itself as a combat asset, Indian Springs Air Force Auxiliary Field was continuing to grow back home in preparation to become the home of additional RPA squadrons. "Indian Springs was a pretty bare base then," John said. "Most of the existing infrastructure was dilapidated, early Cold War era construction. They converted the small Base Exchange into our Intel vault and they renovated a small building across the street for our squadron operations facility. We ate at a small chow hall that originally supported up-range and transient aircraft operations. There was a recreation center/gym converted from several other old buildings 'kluged' together." Mardi Wilcox, who was the squadron maintenance officer in 1995, took her new task head on despite having few resources available at the time. "I was super excited to be selected as the first maintenance officer in the Air Force to be assigned to a UAV unit," she said. "It was cutting edge technology and the UAVs we had at the time were special in that way. No one else had them, and a lot of people had never heard of them. We were excited because there was no limit to what they could do ... we could only dream about what was to come. We had one double-wide trailer and one small hangar. Shelters for the UAVs were canvas structures across the ramp. It was 10 tons of stuff in a 1 ton bag." During the late 1990s the program was still in its beginning phases. For some this was exciting but to others it seemed less than promising. However, Wilcox said she had a much different outlook on the subject. "There were a lot of naysayers [at the time]," she said. "Many thought it was just another 'thing' that would just go away ... but our major command leadership made it work. I think for the most part my people loved it. It was new, it was on the leading edge and for the majority of my folks, we wanted it to work. We set the foundation for what the program is today." 2000 - Present: After Operation Allied Force wrapped up in mid-1999, the Air Force was left to figure out what to do with this still relatively new technology. By early 2000 the RQ-1 Predator, which had just proved its capabilities overseas, was armed and became known as the MQ-1 Predator. "As part of the 'lessons learned' from Operation Allied Force, it was determined that if the Predator had a weapon on it, we could cut the time between identifying a target and then destroying it," Snake said. "On Feb. 16, 2000, Predator 3034 took its first successful Hellfire shot from the air, and to all of our surprise, it worked." This new capability arrived just in time, as events on the morning of Sept. 11, 2001, changed many lives and the helped define the future of the Predator. "We watched the attack on the World Trade Center, until we were shocked by flight 77 as it crashed into the Pentagon," Snake said. "Late on the evening of Sept. 12, a lone C-17 took off from an airfield on the west coast with its cargo of Predators and Hellfire missiles. Days later, one of America's first responses to the terrorist attacks on 9/11 was in place and ready for combat." After 9/11 the MQ-1 Predator proved itself resilient and capable during operations Enduring Freedom and Iraqi Freedom. The success of RPAs during these operations resulted in an increased desire for RPA capabilities in future operations. Lt. Col. Russell, who was the RPA assignments officer at Air Force Personnel Center in 2005, remembers trained RPA pilots were a constant need for the Air Force. At the time, there were general officers everywhere who wanted every training spot filled in order to support U.S. and partner nation troops overseas. Pilots, maintainers and intelligence Airmen were pulled from several different platforms from across the Air Force to meet the demand RPA community's growing demands. In 2007, the 432nd Wing was activated at Creech AFB as the Air Force's first wing comprised entirely of RPAs, which was a sign of the program's rapid growth. A year later the demand for RPAs had grown so significantly that the wing expanded and became dual-hatted as the 432nd Wing/432nd Air Expeditionary Wing, capable of offering full-spectrum support to overseas operations while still supporting the 432nd Wing's operate, train and equip efforts. "In 2011, I came out to Creech and was qualified as a MQ-9 pilot," Russell said. "Having been a part of the assignment process in the past, it's good to see how the tribe has grown. The Air Force is very tribal; I used to be an F-15 pilot, so I used to be part of that 'tribe'. Now it's neat to see the growth of an RPA tribe, made up of people from all different backgrounds." As Russell arrived at Creech in 2011, the MQ-1 and its successor, the MQ-9 Reaper reached 1 million total flight hours - just 16 years after the program initially began. Just over two years later, on Oct. 22, 2013, the Air Force's MQ-1 and MQ-9 RPAs doubled that by achieving 2 million cumulative flight hours. Today, the MQ-1 and MQ-9 continue to be flown from 8,000 miles away in Afghanistan in support of Operation Enduring Freedom, patrolling the skies and providing critical support and protection to U.S. and coalition forces on the ground. It is because of the dedication and diligence of the men and women past and present that the RPA community has gotten where it is today. As a testament to the vital role of the RPA community during the past 18 years, Predator 3034, the first RPA to test the Hellfire, and the first to shoot in combat on Oct. 7, 2001, is now displayed at the Smithsonian National Air and Space Museum in Washington, D.C. -ends-
27/09/2013

GAO Faults UCLASS Acquisition Plan

In fiscal year 2014, the Navy plans to commit to investing an estimated $3.7 billion to develop, build, and field from 6 to 24 aircraft as an initial increment of Unmanned Carrier-Launched Airborne Surveillance and Strike (UCLASS) capability. However, it is not planning to hold a Milestone B review--a key decision that formally initiates a system development program and triggers key oversight mechanisms--until after the initial UCLASS capability has been developed and fielded in fiscal year 2020. The Navy views UCLASS as a technology development program, although it encompasses activities commensurate with system development, including system integration and demonstration. Because the initial UCLASS system is to be developed, produced, and fielded before a Milestone B decision, Congress's ability to oversee the program and hold it accountable for meeting cost, schedule, and performance goals will likely be limited. Specifically, the program will operate outside the basic oversight framework provided by mechanisms like a formal cost and schedule baseline, statutory unit cost tracking, and regular reports to Congress on cost, schedule, and performance progress. The Navy believes its approach effectively utilizes the flexibility in the Department of Defense's (DOD) acquisition policy to gain knowledge needed to ensure a successful UCLASS system development program starting in fiscal year 2020. Yet the Navy expects to review preliminary designs, conduct a full and open competition, and award a contract for UCLASS development in fiscal year 2014, a point at which DOD policy and best practices indicate that a program would be expected to hold a Milestone B review to initiate a system development program. Apart from deferring Milestone B, the Navy's plan would be consistent with the knowledge-based acquisition process reflected in DOD policy. UCLASS faces several programmatic risks going forward. First, the UCLASS cost estimate of $3.7 billion exceeds the level of funding that the Navy expects to budget for the system through fiscal year 2020. Second, the Navy has scheduled 8 months between the time it issues its request for air vehicle design proposals and the time it awards the air vehicle contract, a process that DOD officials note typically takes 12 months to complete. Third, the UCLASS system is heavily reliant on the successful development and delivery of other systems and software, which creates additional schedule risk. Fourth, the Navy will be challenged to effectively manage and act as the lead integrator for three separate but interrelated segments--air vehicle, carrier, and control system--and 22 other government systems, such as the aircraft landing system, the timing and alignment of which are crucial to achieving the desired UCLASS capability. While the Navy recognizes many of these risks and has mitigation plans in place, they could lead to cost increases and schedule delays if not effectively addressed. The Navy's UCLASS acquisition strategy includes some good acquisition practices that reflect aspects of a knowledge-based approach. For example, the Navy is leveraging significant knowledge gained from prior technology development efforts, incorporating an open systems design approach, working to match the system's requirements with available resources, and reviewing preliminary designs for the air vehicle before conducting a competition to select a single contractor to develop and deliver the air vehicle segment. Why GAO Did This Study The Navy estimates that it will need $3.7 billion from fiscal year 2014 through fiscal year 2020 to develop and field an initial UCLASS system. The National Defense Authorization Act for Fiscal Year 2012 mandated that GAO evaluate the UCLASS system acquisition strategy. This report (1) assesses the UCLASS acquisition strategy, (2) identifies key areas of risk facing the system, and (3) notes areas where the Navy's strategy contains good practices. To do this work, GAO reviewed the Navy's acquisition strategy and compared it to DOD's acquisition policy, among other criteria; and reviewed Navy acquisition documents and spoke with Navy and Office of the Secretary of Defense officials. What GAO Recommends Congress should consider directing the Navy to hold a Milestone B review for the UCLASS system after the system level preliminary design review is complete. If the Navy does not comply, Congress should consider limiting the amount of funding available for the UCLASS system until an acquisition program baseline is provided. GAO included these matters for consideration because the Navy does not plan to make changes as a result of GAO’s recommendation to hold a Milestone B review following the system level preliminary design review—which is currently scheduled in fiscal year 2015. The Navy did not concur with the recommendation, and believes that its approved strategy is compliant with acquisition regulations and laws. GAO continues to believe that its recommendation is valid as discussed in this report. Click here for the full report (26 PDF pages) on the GAO website. -ends-
09/09/2013

US Lagging in Open Systems for UAVs

Source: US Government Accountability Office Ref: GAO-13-651 Issued July 31, 2013 37 PDF pages This report addresses (1) the characteristics and benefits of an open systems approach, (2) DOD’s efforts in implementing an open systems approach for its UAS portfolio, and (3) challenges, if any, DOD is encountering in implementing this approach. GAO analyzed relevant literature and DOD policies on open systems and interviewed agency and private industry officials to understand how open systems have been implemented and their benefits. In addition, GAO assessed acquisition documents and questionnaire responses from 10 current and planned UAS programs to determine their open system strategies. What GAO Found An open systems approach, which includes a modular design and standard interfaces, allows components of a product (like a computer) to be replaced easily. This allows the product to be refreshed with new, improved components made by a variety of suppliers. Designing weapons as open systems offers significant repair, upgrade, and competition benefits that could translate to millions of dollars in savings as the weapons age. Other benefits are shown in the figure below. The services vary in their use of open systems on the Department of Defense’s (DOD) 10 largest unmanned aircraft systems (UAS). The Navy used an open systems approach at the start of development for the air vehicle, ground control station, and payloads (i.e., cameras and radar sensors) for three of its four current and planned UAS and anticipates significant efficiencies. For example, Navy and contractor officials expect the Small Tactical UAS to be able to integrate at least 32 payloads developed by 24 manufacturers, some in a matter of days or months rather than years as previous programs experienced. Conversely, none of the Army or Air Force UAS programs initially implemented an open systems approach, relying instead on prime contractors to upgrade and modernize the UAS. The Army is now developing an open ground control station for each of its three legacy UAS programs. Only one of the Air Force’s three UAS programs plans to implement an open systems approach on fielded aircraft. Policies and leadership can help drive DOD’s acquisition community to use an open systems approach, but challenges exist. Although DOD and the services have policies that direct programs to use an open systems approach, the Navy is the only service that largely followed the policy when developing its UAS. In addition, while new open systems guidance, tools, and training are being developed, DOD is not tracking the extent to which programs are implementing this approach or if programs have the requisite expertise to implement the approach. Navy UAS program officials told us they relied on technical experts within Naval Air Systems Command to help develop an open systems approach for their programs. Until DOD ensures that the services are incorporating an open systems approach from the start of development and programs have the requisite open systems expertise, it will continue to miss opportunities to increase the affordability of its acquisition programs. (PDF format) Full text