The British Army shipped its long-delayed Watchkeeper tactical UAV to Afghanistan and began flying ISR missions there before making it public on Sept 29, three months before it is to pull out its last troops deployed there. (UK MoD photo)

Breaking News

see all items

Press Releases

see all items

30/09/2014

British Army’s Watchkeeper UAV Flies First Missions In Afghanistan

The Ministry of Defence has announced that the Army’s next generation of Unmanned Air System (UAS), Watchkeeper, is now fully operational in Afghanistan. This new capability is providing force protection for British troops as they prepare to draw down from Afghanistan by the end of this year. Footage released today shows Watchkeeper carrying out surveillance tasks and gaining situational awareness via its cutting edge cameras and radar capability, a new asset for the UK’s Armed Forces. Defence Secretary, Michael Fallon, made the announcement on a visit to Kabul alongside Chief of the Defence Staff, General Sir Nicholas Houghton, who also visited Camp Bastion where he met the Army personnel and saw Watchkeeper flying operationally. Defence Secretary Michael Fallon said: “Watchkeeper is the first Unmanned Air System developed and built in the UK to become operational and will be a significant surveillance and reconnaissance capability for the Army for years to come. There is no doubt that it will prove to be a battle-winning technology. “Watchkeeper will provide real-time information for troops conducting operations on the ground, allowing them to understand better and thereby overcome threats they may face.” Chief of the Defence Staff, General Sir Nick Houghton said: “I was delighted to see Watchkeeper in operational use earlier this week when I visited British and ISAF forces in Afghanistan. The enhanced real-time situational awareness Watchkeeper provides means that our local understanding is greater, our tactical decisions better informed and that, ultimately, personnel on the ground are safer.” Watchkeeper pilot and payload operator, Sgt Alex Buchanan, said: "It's been a real privilege to be the first to fly the Army's new Watchkeeper Remotely Piloted Air System on operations. It's an amazing capability and has already provided important information to the troops, enhancing the safety of everyone that lives and works at Bastion. The video and images we provide are a bit like what you might have seen during police chases on TV, the main differences are the videos and pictures are a much higher resolution and we fly the aircraft from a control centre on the ground." Gathering crucial information from the battlefield, Watchkeeper, built by Thales UK, will provide UK troops with life-saving surveillance, reconnaissance and intelligence. It will also give personnel on the ground greater situational awareness, helping to reduce the risk of threats. Before reaching this milestone, Watchkeeper, which is unarmed, underwent extensive flight trials at West Wales Airport, Parc Aberporth followed by the Army’s highly skilled pilots completing their training at Boscombe Down airfield. Following the handover of Camp Bastion in Afghanistan, the Unmanned Air System will return home to Wiltshire where Royal Artillery troops will continue to train with the system in a restricted airspace over Salisbury Plain. (EDITOR’S NOTE: Despite continuing claims that Watchkeeper is a UK-developed system, it in fact is based on an Elbit Hermes 450 airframe and it and its components are developed by UK companies in which Elbit has a majority share.) (ends)
30/09/2014

Insitu Wins ScanEagle Orders for Czechia, Yemen

-- Insitu Inc., Bingen, Washington, is being awarded $10,976,866 for firm-fixed-price delivery order 0007 against a previously issued Basic Ordering Agreement (N68335-11-G-0009) for the procurement of one ScanEagle System that consists of nine ScanEagle Electro-Optics and three ScanEagle Infra-red Unmanned Air Vehicles for the government of Yemen under the Foreign Military Sales program. This order also provides for one 12-month/3,600 flight-hour sustainment package with acceptance testing, spares, technical manuals, and training; a site activation team; field service representative; and force protection. Work will be performed in Bingen, Washington (50 percent), and Sanaa, Yemen (50 percent), and is expected to be completed in September 2015. Foreign military sales funds in the amount of $10,976,866 are being obligated at time of award, none of which will expire at the end of the fiscal year. The Naval Air Warfare Center Aircraft Division, Lakehurst, New Jersey, is the contracting activity. -- Insitu, Inc., Bingen, Washington, is being awarded $6,757,764 for firm-fixed-price delivery order 0006 against a previously issued Basic Ordering Agreement (N68335-11-G-0009) for the procurement of one ScanEagle System for the government of the Czech Republic under the Foreign Military Sales program. The system consists of seven ScanEagle electro-optics, and three ScanEagle infra-red unmanned air systems. Work will be performed at Bingen, Washington (50 percent), and Afghanistan (50 percent), and is expected to be completed in September 2015. Foreign military sales funds in the amount of $6,757,764 will be obligated at time of award, all of which will expire at the end of the current fiscal year. The Naval Air Warfare Center Aircraft Division, Lakehurst, New Jersey, is the contracting activity. -ends-
26/09/2014

Blackjack UAV Returns from First Deployment

PATUXTENT River, VA. --- In the video below, a Marine from Unmanned Aerial Vehicle Squadron (VMU) 2 recovers a Blackjack unmanned aircraft system (UAS) in Afghanistan. This small UAS returned from its first early operational deployment Sept. 10 after flying nearly 1,000 hours in 119 days in theatre. It supplied Marines with full-motion video and other intelligence, surveillance and reconnaissance support that helped keep them out of harm’s way. Marines will use these early operational capability systems as a training asset. Blackjack is scheduled to complete shipboard testing in the fall with the first ship-based deployment scheduled for spring 2015. (Navair video) -ends-
26/09/2014

Airbus Pseudo-Satellite UAV Flies in Dubai

Airbus Defence and Space announced today that a team comprising engineers from the Emirates Institution for Advanced Science and Technology (EIAST) and the Airbus Zephyr programme has successfully completed the first civil flight of the Airbus Zephyr High Altitude Pseudo-Satellite (HAPS). The flight, completed last week in Dubai, achieved the highest altitude ever reached in the United Arab Emirates, 61,696 ft., and by completing a full day / night cycle of operation also recorded the longest flight of any aircraft within the UAE. The flight was approved by the Dubai Civil Aviation Authority (DCAA) and represents the first time that a HAPS operation has been authorised by a civil authority. "DCAA are proud to have been able to support EIAST and Airbus to complete the first flight of a High Altitude pseudo-satellite in the UAE." said Michael Rudolph of the Dubai Civil Aviation Authority (DCAA) and then explained the importance of the operation. "By working closely with EIAST, Airbus, DCAA, Sheikh Zayed Centre and our military Air Force colleagues we have been able to complete not only the first flight of such a novel air vehicle but also safely manage a flight to above 60,000 feet close to one of the three busiest airports in the world. This shows that Dubai and the DCAA hold a leading position in developing and implementing procedures and policies for the safe and efficient operation of UAVs within the region." Sarah Amiri, EIAST Programme manager for the Advanced Aerial Systems Programme said “This has been an outstanding cooperation between Airbus, EIAST and the Dubai CAA and we are delighted that within a few short months we have integrated, tested and flown such an advanced unmanned aircraft and been able to demonstrate a number of applications that are critical to Dubai and the wider world.” “The flight in Dubai demonstrated the ability of Zephyr to operate in regions of the world’s most crowded airspaces”, said Chris Kelleher, Technical Director of the Airbus HAPS programme. ”I am immensely grateful for the support and diligence of the Dubai CAA and other authorities in working closely with the combined EIAST Airbus Team to ensure a safe and successful stratospheric flight. With all systems working well in temperatures ranging between +40oC and -80oC and up to a maximum altitude of 61,696ft, this flight further reinforces confidence in Zephyr for users and regulators.” Jens Federhen, Head of the Airbus HAPS programme, highlighted the importance of this most recent flight for the Airbus programme: “Airbus has long recognised the value that HAPS can bring to important civil applications such as resource management, environmental monitoring and support to emergency services and it was critical that we demonstrated that the Zephyr could be operated under civil jurisdiction to enable these services to be offered. With the support of the Dubai CAA, EIAST has shown, for the first time anywhere, that such operations can be undertaken in the civil domain.” EIAST and Airbus now intend to work together on the development of more advanced HAPS systems and payloads and, through further demonstrating safe flight operations, to enable these systems to provide essential services to the civil and commercial markets. Airbus Defence and Space is a division of Airbus Group formed by combining the business activities of Cassidian, Astrium and Airbus Military. The new division is Europe’s number one defence and space enterprise, the second largest space business worldwide and among the top ten global defence enterprises. It employs some 40,000 employees generating revenues of approximately €14 billion per year. -ends-
25/09/2014

US Marines Order RQ-12 Wasp Small UAVs

QUANTICO, Va. --- At Modern Day Marine – AeroVironment, Inc. (AVAV) today announced it has received a firm fixed-price order valued at $21,779,408 for RQ-12 Wasp AE small unmanned aircraft systems (UAS) and initial spares packages for the United States Marine Corps. The United States Marine Corps, which recently unveiled its next generation small UAS family of systems, is adding RQ-12 Wasp AE as the short-range, or micro, solution to the existing small UAS portfolio made up of the AeroVironment RQ-11B Raven and RQ-20A Puma AE. Puma AE is the USMC’s long-range solution. “Together with the professionals at ADS, whose military-experienced personnel procured this order by demonstrating a clear understanding of the customer’s mission and requirements, we are confident that Wasp AE will provide deployed Marines with valuable situational awareness that will help them operate more safely and effectively,” said Roy Minson, AeroVironment senior vice president and general manager of its Unmanned Aircraft Systems business segment. AeroVironment received the order from ADS, Inc. on behalf of the United States Marine Corps through the Defense Logistics Agency (DLA) Tailored Logistics Support (TLS) program. Delivery is scheduled within 12 months. Previously procured by the Marine Corps and the U.S. Air Force, the Wasp AE weighs 2.8 pounds, operates for up to 50 minutes at a range of up to five kilometers and delivers live, streaming color and infrared video from its pan-tilt-zoom Mantis i22 AE gimbaled payload. Launched by hand and capable of landing on the ground or in fresh or salt water, the Wasp AE provides portability and flexibility for infantry, littoral or maritime reconnaissance operations. “Wasp AE delivers unmatched portability and flexibility with its small size, all-environment operation and advanced capabilities,” Minson said. RQ-11B Raven, RQ-12 Wasp, RQ-20A Puma and Shrike VTOL comprise AeroVironment’s Family of Small Unmanned Aircraft Systems. Operating with a common ground control system (GCS), this Family of Systems provides increased capability to the warfighter that can give ground commanders the option of selecting the appropriate aircraft based on the type of mission to be performed. This increased capability has the potential to provide significant force protection and force multiplication benefits to small tactical units and security personnel. AeroVironment provides logistics services worldwide to ensure a consistently high level of operational readiness and provides mission services for customers requiring only the information its small UAS produce. AeroVironment has delivered thousands of new and replacement small unmanned air vehicles to customers within the United States and to more than 30 international governments. The Puma AE small UAS comprises one component of AeroVironment’s advanced, turnkey data collection, processing and delivery solution employed to provide commercial customers with engineering-quality information, on-demand, across multiple industries such as oil & gas, agriculture, mining and others. AeroVironment designs, develops, produces, supports and operates an advanced portfolio of Unmanned Aircraft Systems (UAS) and electric transportation solutions. The company’s electric-powered, hand-launched unmanned aircraft systems provide powerful actionable information to military, public safety and commercial personnel around the world through real-time, airborne imaging, sensing and communication. -ends-
24/09/2014

Northrop Wins $78M for Global Hawk Spares

Northrop Grumman Aerospace Systems, San Diego, California, has been awarded a $78,066,102 firm-fixed-price delivery order under a basic order agreement for initial Global Hawk Block 40 spare parts. Work will be performed at Warner Robins Air Force Base, Georgia, and is expected to be complete by Sept. 24, 2018. This award is the result of a sole-source acquisition. Fiscal year 2012 aircraft procurement funds in the amount of $78,066,102 are being obligated at the time of award. Air Force Life Cycle Management Center, Wright-Patterson Air Force Base, Ohio, is the contracting activity. (FA8620-13-G-0001) -ends-
24/09/2014

Textron Demos Glide Bomb on Shadow UAV

QUANTICO, VA --- Textron Systems Weapon & Sensor Systems announced today a pair of successful live-fire demonstrations of its new Fury lightweight precision guided glide weapon off of a Shadow Tactical Unmanned Aircraft System at the U.S. Army's Yuma Proving Ground in Arizona. The combined Textron Systems Weapon & Sensor Systems and Unmanned Systems team dropped Fury last month from a Shadow 200, engaging and detonating on the target. This marked the first live drop of the Fury and the first live weapon drop from the Unmanned Systems Shadow 200 aircraft configuration. The Textron Systems team, along with partner Thales UK, achieved this milestone within 15 months of initiating work on the small, lightweight weapon system. Fury, equipped on a Shadow aircraft, is on display this week during the 2014 Modern Day Marine exposition at Textron Systems booth 2608. "Our team is focused on quickly bringing new and affordable capability to the war fighter," explains Weapon & Sensor Systems Senior Vice President and General Manager Ian Walsh. "Based on an understanding of our customers' needs, we demonstrated -- in a short period of time -- Fury's full TRL 7 capability in a realistic environment. Not only is the weapon simple to use, accurate and attractively priced, it's an ideal complement to the trusted Shadow platform as well as other UAS or light attack aircraft. We've also proven that the lightweight weapon and carriage system creates very little drag, resulting in minimal operational impact to aircraft performance and endurance." Fury is equipped with a mature and proven warhead. The weapon's tri-mode fuzing -- impact, height of burst and delay -- further enables a single Fury to address a broad target set, ranging from static and moving light armored vehicles to small boats and personnel. The precision weapon uses a common interface for rapid integration on multiple manned and unmanned aircraft systems. Fury is guided by a GPS-aided inertial navigation unit system with a Semi-Active Laser Seeker terminal guidance capability. This enables the weapon to engage both stationary and moving targets within 1m accuracy, or fly to specific target coordinates. Textron Inc. is a multi-industry company that leverages its global network of aircraft, defense, industrial and finance businesses to provide customers with innovative solutions and services. -ends-
24/09/2014

Aerovironment Wins $19M for TERN Phase II

AeroVironment Inc., Monrovia, California, has been awarded a $19,035,007 modification (P00002) adding Phase II base period within the general scope of the cost-plus-fixed-fee contract (HR0011-13-C-0099) for the Tactically Exploited Reconnaissance Node (TERN) program. The addition of the TERN Phase II program brings the total cumulative face value of the contract to $21,363,667 from $2,328,660. Work will be performed in the following locations: Monrovia, California (80 percent); Tucson, Arizona (5 percent); Fort Worth, Texas (10 percent); and Sparks, Nevada (5 percent). The TERN Phase II program is expected to be complete on September 30, 2015. Fiscal year 2014 research, development, test and evaluation funds in the amount of $5,750,000 are being obligated at time of P00002 award. The Defense Advanced Research Projects Agency, Arlington, Virginia, is the contracting activity. -ends-
24/09/2014

Rockwell Enhances Persistent Surveillance System

BRISBANE, Australia --- Rockwell Collins today announced important enhancements to its Patrol Persistent Surveillance System (PPSS) in response to the rapidly evolving requirements of its customers. At the Land Forces 2014 trade show in Brisbane, Australia, the company unveiled the new features, which include the integration of sensor data from the Aeryon SkyRanger small Unmanned Aerial System (sUAS) and the SpotterRF Ground Surveillance Radar (GSR). Battle-proven by defence forces in the harshest of environments, PPSS combines sound, vibration and imaging sensors for enhanced situational awareness and the constant monitoring of threats against military bases, forward observation posts and other secure facilities. The PPSS network automatically recognizes new sensors “on the fly,” so there is no need for the operator to manually reconfigure the system. “The integration of the SkyRanger sUAS and SpotterRF demonstrates the ability of PPSS to accommodate individual sensors and cameras to meet the changing needs of an irregular perimeter,” said Nick Gibbs, managing director, Rockwell Collins Australia. “The fusion of multi-sensor data by the PPSS enables Rockwell Collins to provide our customers with the right information at the right time to avoid a facility perimeter breach.” When an Unattended Ground Sensor (UGS) senses activity, it instantly sends a signal to the operator who can immediately launch the SkyRanger sUAS to provide eyes-on-target. The SkyRanger vertical take-off and landing sUAS platform brings secure, real-time and simultaneous tactical situational awareness to ground forces and remote command. Advanced autonomous capabilities and simple touchscreen controls at the PPSS operator’s console require minimal training for soldier, squad, or platoon-level deployment. SpotterRF is an economical means to cover wide areas from a few acres to hundreds of acres. SpotterRF fits between the short range (<100m) UGS or trip wire technologies and the long range GSRs that can weigh 100 pounds or more. Typical GSRs have ranges of 10 kilometers for tracking people but have rotating heads that reduce reliability, and require highly trained operators to set up and maintain. SpotterRF is more like an IP camera with a web user interface and an interface directly into Google Earth. SpotterRF sensors measure range, angle and velocity of the target, and using its GPS position, automatically calculate the target’s GPS coordinates, similar to putting a GPS tracker on an uncooperative target. Rockwell Collins is a pioneer in the development and deployment of innovative communication and aviation electronic solutions for both commercial and government applications. Our expertise in flight deck avionics, cabin electronics, mission communications, simulation and training, and information management is delivered by a global workforce, and a service and support network that crosses more than 150 countries. -ends-
24/09/2014

Boeing, Liquid Robotics Team for Unmanned Ocean Vehicles

ST. LOUIS and SUNNYVALE, Calif. --- Boeing and Liquid Robotics, the market leader in unmanned ocean vehicles, today signed a global, multi-year teaming agreement for collaboration on product development, maritime services and operational deployments. The initial focus of the collaboration will be to develop total integrated solutions for anti-submarine warfare, maritime domain awareness and other maritime defense applications. “It’s a great opportunity to partner with Liquid Robotics to provide new and existing customers a unique portfolio of defense solutions and capabilities,” said Chris Chadwick, president and CEO of Boeing Defense, Space & Security. “This relationship allows the Boeing-Liquid Robotics team to solve maritime security and surveillance challenges in entirely new and highly effective ways and provides unprecedented capability and value to customers worldwide." The agreement combines Boeing Defense, Space & Security’s vast experience developing and fielding multi-layered intelligence, surveillance and reconnaissance solutions with Liquid Robotics’ award-winning autonomous ocean technology. “We look forward to teaming with Boeing to expand domestic and international opportunities that combine Boeing’s expertise in aircraft systems and integrated defense solutions with Liquid Robotics’ expertise in persistent unmanned ocean vehicles,” said Gary Gysin, President and CEO of Liquid Robotics. "Together, Boeing and Liquid Robotics will provide customers an integrated, seafloor-to-space capability for long duration maritime defense.” A unit of The Boeing Company, Boeing Defense, Space & Security, is one the of world’s largest defense, space and security businesses specializing in innovative and capabilities-driven customer solutions, and the world’s largest and most versatile manufacturer of military aircraft. Headquartered in St. Louis, Boeing Defense, Space & Security is a $33 billion business with 56,000 employees worldwide. Liquid Robotics is an ocean drone manufacturer with a goal of instrumenting the ocean with fleets of networked, naturally powered robots carrying sensor payloads. Our Wave Glider ocean drones are transforming ocean observation, making data collection and monitoring easier, safer, and more cost-effective. -ends-

Analysis and Background

see all items

11/07/2014

UK, France to Launch FCAS Demo Phase

PARIS --- Four years after they first agreed to jointly develop an unmanned combat aircraft, France and Britain will finally launch the demonstration phase of the Future Combat Air System (FCAS) on July 15 at the Farnborough air show, the French defense ministry announced July 10. The two countries’ defense ministers will sign a Memorandum of Understanding (MoU) authorizing a 24-month, €150 million definition phase of the FCAS program, known as FCAS-Demonstration Phase, the French defense ministry announced July 10. Contracts will be awarded to industry in the autumn, and the project will officially begin in January 2015. Participating companies are Dassault Aviation and BAE Systems for airframe and systems integration; Thales and Selex ES (UK) for sensors and electronics; and Snecma and Rolls-Royce for engine and power systems. “There is agreement on a two-year concept phase…[and]….a contract could be awarded shortly,” UK Defence Procurement Minister Philip Dunne told reporters at the Eurosatory show here June 19, adding however that “data-sharing agreements have to be competed.” Physics and aerodynamics being what they are, it is not surprising that Dassault’s Neuron demonstrator (above) and BAE System’s Taranis demonstrator (below) should look the same at first glance. The FCAS will build on knowledge gained on both programs. (photos Dassault and BAE). BAE and Dassault have been working together for about 18 months to investigate the feasibility of joint development of FCAS, based on their separate but complementary experience in developing unmanned combat air vehicle (UCAV) demonstrators, either alone (BAE with its Taranis) or jointly – Dassault’s Neuron project also included Italy’s Alenia Aermacchi, Sweden’s Saab as well as smaller Greek and Spanish firms. A major question mark concerns the work-sharing arrangements, as both companies are obviously keen to advance and maintain their technological know-how. This is complicated, again, by their previous work on Taranis and Neuron, which sometimes led them in different directions and which may be difficult to reconcile. “We have already shared some data, but we haven’t shown everything yet,” Benoît Dussaugey, Dassault Executive Vice-President, International, told Defense-Aerospace.com June 18, adding that full disclosure will not take place before contract award. However, having successfully managed Neuron on time and on schedule with an international team of partners, Dassault does not believe this aspect will be a show-stopper. "We are confident we will find an agreement with our partners on work-share, subject to sovereign decisions by governments," Dussaugey said. The program could be opened to additional foreign partners, he adds, on two conditions: "that everyone accepts and respects our common rules, and that the respective governments finance [their share] of the entire phase." Nonetheless, BAE’s surprise and high-profile unveiling of its Taranis UCAV demonstrator in January, which it had jealously kept under wraps until then, was clearly intended to show its credentials in the lead-up to the FCAS MoU. It is probable that, as in the previous phase, BAE will remain FCAS prime contractor, while France’s defense procurement agency, Direction Générale pour l’Armement (DGA), will act as program executive on behalf of both nations. Having successive definition and demonstration phases is considered essential for governments to define and harmonize their operational requirements, and for industry to weigh their technical feasibility and cost implications. For example, will in-flight refueling be required, and if yes using a receptacle or a boom? Where and how should radar antennas be integrated into the airframe? Will FCAS be designed to follow a pre-programmed flight path (which the French favor, as it is impervious to jamming, interception and loss of data-link), or on the contrary be remotely-piloted, as the Royal Air Force favors so as to keep a man permanently in the loop? Should the aircraft be totally silent in terms of radar, radio and IR emissions, or could it resort to jamming? Should it be single- or twin-engined? Once these basic questions are answered, processed and priced by industry, the logical follow-up would be a demonstration phase, during which the project would be further developed and prototypes or flight test aircraft built, but a decision would not be required before late 2017, which makes it very unlikely that a FCAS could fly before the end of the decade. -ends-
30/04/2014

USAF Vision & Plans for UAVs 2013-2038

Source: US Air Force Ref: no reference Issued April 04, 2014) 101 PDF pages Air Force leaders outlined what the next 25 years for remotely piloted aircraft will look like in the RPA Vector, published April 4. “The RPA Vector is the Air Force’s vision for the next 25 years for remotely-piloted aircraft,” said Col. Kenneth Callahan, the RPA capabilities division director. “It shows the current state of the program, the great advances of where we have been and the vision of where we are going.” The goal for the vector on the operational side is to continue the legacy Airmen created in the RPA field. The vector is also designed to expand upon leaps in technology and changes the Airmen have made through the early years of the program. “The Airmen have made it all about supporting the men and women on the ground,” Callahan said. “I couldn’t be more proud of them for their own advances in technology to expand the program, making it a top platform.” The document gives private corporations an outlook on the capabilities the Air Force wants to have in the future, ranging from creation of new RPAs to possibilities of automated refueling systems. “There is so much more that can be done with RPAs,” said Col. Sean Harrington, an intelligence, surveillance, and reconnaissance command and control requirements chief. “Their roles (RPAs) within the Air Force are evolving. We have been able to modify RPAs as a plug-and-play capability while looking to expand those opportunities.” In recent years, RPAs not only supported the warfighter on the ground, they also played a vital role in humanitarian missions around the world. They provided real time imagery and video after the earthquake that led to a tsunami in Japan in 2011 and the earthquake in Haiti in 2010, according to Callahan. Then, most recently, during the California Rim Fire in August 2013, more than 160,000 acres of land were destroyed. Though this loss was significant, it was substantially decreased by the support of the California Air National Guard’s 163rd Reconnaissance Wing, with support from an MQ-1 Predator, a remotely piloted aircraft. With this vector, technologies may be created to improve those capabilities while supporting different humanitarian efforts, allowing the Air Force to support natural disaster events more effectively and timely. The future of the Air Force’s RPA programs will be continuously evolving, to allow the Air Force to be the leader in Air, Space, and Cyberspace. “We already combine our air, space and cyber forces to maximize these enduring contributions, but the way we execute must continually evolve as we strive to increase our asymmetric advantage,” said Gen. Mark Welsh, the Air Force chief of staff. “Our Airmen's ability to rethink the battle while incorporating new technologies will improve the varied ways our Air Force accomplishes its missions.” (PDF format) Full text
07/03/2014

Airbus Plots Return to UAV Market

MADRID --- Airbus Defense and Space is preparing to return to the UAV market, three years after it was forced out by the reluctance of the French and German governments to financially support any of the unmanned aircraft projects which it had developed. “We are revisiting our strategy on unmanned aerial vehicles with a vision to leadership,” Antonio Rodríguez Barberán, Head of Military Aircraft sales at Airbus Defence and Space, told Defense-Aerospace.com. “We are planning to be there, even if it takes some years.” This is a major shift in company policy, as Airbus Group decided in 2011 to freeze its UAV activities after having invested over 500 million euros in several programs without having convinced its domestic customers that they were worth supporting. Corporate strategy, at the time, was to sit out until European governments decided which programs, and which companies, they would support. This approach was not very successful, however, as Airbus was frozen out of two major market segments: Medium Altitude Long Endurance (MALE), where France preferred buying Reaper unmanned aircraft from the United States, with Germany and the Netherlands to follow shortly, and the High Altitude Lone Endurance (HALE) segment, where its EuroHawk program was abruptly cancelled by the Germen government because of cost and regulatory failings. The company was left with only smaller UAVs, a segment where competition is rife and margins small. Airbus has now changed tack because “it’s time for a proper aircraft manufacturer to get involved, to certify UAVs to civilian standards – and I mean FAR 23 and FAR 25 – so they can be used in unsegregated airspace,” Rodriguez said. At present, UAVs can only be used in segregated airspace, under military air regulations, and so are severely limited in their operational usefulness. While it has no immediate plans to resume large-scale investments in the UAV sector, Airbus DS does not see financing as a major obstacle. “We know there is a market, and if there is a market there is money,” Rodriguez said. He adds that for Airbus this is a decade-long project, which will eventually bring it a leading role: “Airbus is not here to be a subcontractor,” he says, making clear that the company is not aiming for a subordinate role in ongoing European UAV programs. While waiting for the MALE market to mature, and for the dust to settle in the combat UAV (UCAV) segment, Airbus is finalizing development of its own tactical UAV, Atlante, which is significantly smaller than the MALE and HALE segments it previously pursued. Weighing about 550 kg, Atlante has been developed in Spain, and from the outset the goal has been to fly in segregated civilian airspace, i.e. over populated areas, and it is intended to be certified for that operational environment. “The key word here is ‘certification’,” Rodriguez says, adding that, of course, “it has to offer value for money.” Atlante first flew in February 2013, Light Transport Aircraft Sector Gliding Along While its UAV strategy matures, Airbus DS continues to improve its transport aircraft product line. It recently agreed with Indonesian partner IPT Nurtanio, also known as Indonesian Aerospace, to develop a modernized version of the C-212 light twin turboprop transport, and it also is refining the performance of the C-295, its very successful medium twin. Most of the effort is on refining the airframe design, for example by adding wingtip extensions, and on increasing engine power ratings, which together add 1,000 ft. to the aircraft’s ceiling in One Engine Inoperative (OEI) conditions. The C295’s Pratt & Whitney engines are already at their power limit, so they have no more growth potential, so these refinements, together with a major upgrade of the aircraft’s avionics, will suffice to keep them competitive for years to come, says Rodriguez. The avionics upgrade will make it easier for the aircraft to operate in a civil environment. A new design may well be necessary in 10 or 15 years, he adds, but for now it is still very premature. The current line-up is quite profitable for the company, and currently accounts for average sales of about 20 aircraft per year, worth about 700-800 million euros including 100-150 million euros for related services. Over the past 10 years, Airbus has sold 157 of the 306 light/medium turboprops sold world-wide, and so has a market share of over 50%, and this should increase as additional orders will be announced this year, one of them “by Easter.” Compared to the Alenia C-27J Spartan, its direct competitor, the C-295 is simple, offers substantially lower fuel costs and “can be maintained with a hammer and a screwdriver,” Rodriguez says. Specifically, he says that maintenance costs are 35% lower, fuel consumption is 50% lower and, in terms of life-cycle costs, “it can save one million euros per plane, per year.” -ends-
03/03/2014

US Unmanned Vehicle Roadmap, FY2013-38

Source: U.S Department of Defense Ref: 14-S-0553 Issued December 26, 2013 168 PDF pages Strategy and budget realities are two aspects of the Defense Department's new Unmanned Systems Integrated Roadmap, released Dec. 23. The report to Congress is an attempt to chart how unmanned systems fit into the defense of the nation. "The 2013 Unmanned Systems Integrated Roadmap articulates a vision and strategy for the continued development, production, test, training, operation and sustainment of unmanned systems technology across DOD," said Dyke Weatherington, the director of the unmanned warfare and intelligence, surveillance and reconnaissance office at the Pentagon. "This road map establishes a technological vision for the next 25 years and outlines the actions and technologies for DOD and industry to pursue intelligently, and affordably align with this vision," he continued. Unmanned aerial vehicles have received the most press, but unmanned underwater vehicles and ground vehicles are also providing warfighters with incredible capabilities. Although unmanned vehicles have proved their worth in combat operations throughout the Middle East and Central Asia, current technologies must be expanded and integrated into the sinews of the defense establishment, the report says. It also calls for unmanned systems to be programs of record in order to achieve "the levels of effectiveness, efficiency, affordability, commonality, interoperability, integration and other key parameters needed to meet future operational requirements." (PDF format) Full text
31/01/2014

Was Watchkeeper Grounded for 3 Months?

PARIS --- The service introduction of Watchkeeper, the tactical UAV that has been in development for the British Army since 2005, may be further delayed due to unidentified technical issues that appear to have grounded the aircraft for three months in late 2013. The Watchkeeper program apparently logged no flight activity between mid-September and mid-January, according to data provided by Thales, the program’s main contractor, which showed that the number of total flight hours and total sorties barely changed between Sept. 16, 2013 and Jan 12, 2014. As of Sept. 16, Watchkeeper had flown “almost 600 sorties, for a total of about 1,000 flight hours,” a Thales spokesperson told Defense-Aerospace.com in an e-mail follow-up to an interview at the DSEi show in London. On Jan. 20, responding to a follow-up query, the Thales spokesperson said that “Tests are progressing nominally, as planned. We have now passed 600 sorties and are nearing 1,000 flight hours.” These figures show no flight activity between mid-September and mid-January. Asked to explain this apparent discrepancy, the Thales spokesperson had not responded by our deadline, three days later. “The delivery of Watchkeeper equipment is on track and trials are continuing with over 550 hours flying having been completed,” the UK Ministry of Defence in a Jan 31 e-mail statement. Note this is about half the flight hour figure provided by Thales. “…the Release to Service process is taking longer than expected,” the MoD statement continued, adding that “The last flight was last week, so it’s incorrect to say that the assets are still grounded.” This unannounced grounding may be one reason why the French Ministry of Defense is back-pedaling on earlier promises to consider buying the Watchkeeper, after an inconclusive evaluation between April and July 2013 by the French army. The evaluation included “several dozen flight hours” from Istres, the French air force’s flight test center in south-eastern France, a French MoD spokesman said Jan. 31. The evaluation report has not been completed, and no date has been set, he added. The final communiqué of today’s Anglo-French summit meeting, for the first time since November 2010, makes no mention of the Watchkeeper, although it was mentioned in passing by French President François Hollande during the summit press conference. Thales’ figures on Watchkeeper flight activities have also been provided to other news outlets. A Jan. 16 article by FlightGlobal quotes Nick Miller, Thales UK’s business director for ISTAR and UAV systems, as saying that “Watchkeeper aircraft have now completed more than 600 flights, exceeding a combined 950 flight hours.” Aviation Week had posted an article the previous day, Jan. 15, in which it reported that “Thales U.K….is continuing flight trials and supports army training(Emphasis added—Ed.). However, it is difficult to understand how training can take place without an increase in the number of sorties and flight hours. The above article says “Watchkeeper may début in spring,” echoing a similar story published Sept. 12, 2013 in which Aviation Week said Thales UK “is hopeful that …Watchkeeper…will be certified by the end of the year.” This did not happen. This same Aviation Week Sept. 12 story said that the Watchkeeper “fleet has flown more than 1,000 hr. over 600 flights” – a higher figure than FlightGlobal reported on Jan. 16, four months later. The discrepancies in the figures provided to at least three trade publications clearly contradict company statements that Watchkeeper flight operations are “nominal” and “are continuing,” as they show no flight activity has been logged since September. The obvious conclusion is that flight activities have been curtailed, either by a technical grounding or because of administrative blockages. In either case, Watchkeeper – which is already over three years late -- has clearly hit new obstacles that will further delay its operational clearance by the UK Ministry of Defence’s new Military Aviation Authority (MAA). Watchkeeper is being developed by UAV Tactical Systems (U-TacS), a joint venture between Israel’s Elbit Systems (51% share) and Thales UK, the British unit of France’s Thales, under a contract awarded in 2005. UAV Engines Ltd, which builds Watchkeeper’s engine in the UK, is a wholly-owned subsidiary of Elbit Systems. Originally valued at £700 million, the cost has escalated to over £850 million, and service introduction has been delayed by at least three years. The British Army is due to receive a total of 54 Watchkeeper unmanned aircraft and 15 ground stations. By late 2013, 26 aircraft and 14 ground stations had been delivered, according to published reports. -ends-
30/01/2014

France, UK to Launch Anti-ship Missile, UAV Projects

PARIS --- France and Britain are due to sign several defense-related agreements during their short Jan. 31 summit meeting at Brize Norton, England, including one to launch joint development of a next-generation anti-ship missile and another to fund a two-year feasibility study for a joint combat UAV. British and French officials have widely briefed the media in advance of the summit to obtain the editorial coverage that both countries’ leaders – British Prime Minister David Cameron and French President François Hollande – need to bolster their domestic standing. The briefings also seek to highlight that, after several fruitless summits in the past three years, the two countries are finally making progress on the joint defense projects to which they subscribed in the 2010 Lancaster House treaty. The two countries are expected to launch the long-delayed development of a lightweight helicopter-launched anti-ship guided missile known as FASGW(H) in the UK and ANL (Anti-Navires Léger) in France. Originally due to be launched in 2011, this program is now expected to be funded under a €500 million (or £500 million – accounts differ) contract to be awarded to MBDA, a joint subsidiary of BAE Systems, Airbus Defense & Space and Italy’s Finmeccanica. The Financial Times reported Jan 29 that the cost would be shared evenly, but that Britain will provide initial funding because it needs the missile earlier. It is not expected that the summit will launch other missile projects also long in the pipeline, such as the joint upgrade of the Scalp/Storm Shadow cruise missile and a joint technology roadmap for short range air defence technologies. UCAV feasibility study The second major decision that could be announced Jan. 31, sources say, is the launch of a two-year feasibility study for a joint Unmanned Combat Air Vehicle (UCAV), with a contract to be awarded jointly to BAE Systems and Dassault Aviation, which last year completed a 15-month risk reduction study. This project has barely inched forward since 2010, when it was first mooted, but Rolls-Royce and Safran have agreed to cooperate on the aircraft’s engines, and Thales and Selex ES on its electronics, Defense News reported Jan. 28, such is the eagerness to launch a funded program before design know-how evaporates. The two governments must also decide whether, and at what stage, to open this project to other European partners, such as Italy’s Alenia Aermacchi, Sweden’s Saab and the Airbus Group (formerly EADS), which have developed or are studying their own aircraft but lack government funding. Little concrete progress is expected at the summit, however, on other unmanned aircraft projects under discussion. One is France’s possible buy of the Watchkeeper tactical drone, developed for the British Army by Thales UK, and which is running several years late. Although France has said several times that it was interested in buying it and allow “cooperation on technical, support, operational and development of doctrine and concepts,” it seems that its operational evaluation by the French Army’s 61st Artillery Regiment was not conclusively positive. Another project is the long-running saga of a European medium-altitude, long-endurance (MALE) UAV intended to ultimately replace the US-supplied Predator UAVs currently operated by both countries, as well as Italy, and soon to be bought by Germany and the Netherlands. To date, this project has received little in the way of government funding, and it is this lack of serious money, combined with the lack of clear military requirements, that industry says is curtailing its ability to address Europe’s UAV needs. Minehunters and armored vehicles The two countries are also expected to launch the joint development of an autonomous underwater vehicle to replace the remote-controlled robots used by their navies’ minehunters. Finally, France may announce it will loan about 20 VBCI wheeled combat vehicles to the British Army, which currently lacks a vehicle of this kind, the Paris daily “Les Echos” reported Jan. 27. This is intended to allow the British, who are said to have been impressed by the VBCI’s performance in Afghanistan and Mali, to evaluate it before they begin procurement of similar heavy wheeled armored vehicles in 2017. -ends-
27/01/2014

US Navy’s Mabus on Unmanned Naval Ops

This past summer, Chief of Naval Operations Jonathan Greenert and I stood on the flight deck of the aircraft carrier George H.W. Bush, at sea off the coast of Virginia. We watched as the X-47B unmanned aircraft, a sixty-two foot wingspan demonstrator, made its first arrested landing onboard an aircraft carrier. It was a historic moment for naval aviation. Every Naval Aviator knows landing on an aircraft carrier is about the most difficult thing you can do as a pilot. Recovering the X-47B safely aboard the ship, with the autonomous system landing independent of its human operators, was a vital step toward our future vision of a Carrier Air Wing. In less than a decade, this future air wing will be made up of today’s F/A-18 Super Hornet strike fighters, MH-60 Seahawk helicopters, and advanced future platforms like the F-35C Lightning II Joint Strike Fighter and our next generation unmanned carrier aircraft. The U.S. Navy and Marine Corps are America’s “Away Team.” We provide presence. We are where it counts when it counts, not just at the right time but all the time. We give the President and Combatant Commanders the flexibility they need to respond to any challenge. The platforms we buy to make up our fleet are an important part of our future. Unmanned systems are vital to our ability to be present; they lessen the risk to our Sailors and Marines and allow us to conduct missions that are longer, go farther, and take us beyond the physical limits of pilots and crews. Launching and recovering unmanned aircraft as large and capable as our manned fighters from the rolling decks of aircraft carriers is just one element of the future of maritime presence and naval warfare. Helos Leading the Way While we are designing and testing our fixed wing unmanned aircraft, some of our helicopter squadrons have been operating unmanned systems – both in combat and maritime security operations – for years. The MQ-8B Fire Scout is our current unmanned helicopter system. It has been conducting missions including patrolling against illicit trafficking in the Pacific, counter-piracy operations in the Indian Ocean, and combat operations in Afghanistan and Libya. Since the Fire Scout’s first deployments in 2009 our ships, helicopter squadrons, and Marine Corps units have been working together to refine and expand how we use the platform. The next generation Fire Scout, the MQ-8C with its greater payload and longer range, made its first flight last year. It will deploy in support of our Littoral Combat Ships and Special Operations units. In the past year, we have stood up our first two Fire Scout squadrons in San Diego to train and organize the operators and maintainers who will work on these aircraft. Meanwhile the Marines continue to experiment and operate with the Cargo Resupply Unmanned Aerial System (CRUAS) which carries cargo to patrol bases and forward operating bases in combat areas such as Afghanistan, eliminating the need for dangerous convoys and potentially saving lives. Under, On & Over the Sea The future of unmanned systems in the Navy and Marine Corps is focused on incorporating our people on manned platforms with unmanned systems to create an integrated force. A good example of this integration is the Mine Countermeasures Mission Module we are testing for the Littoral Combat Ship. This module includes a small remotely controlled submarine which tows a mine-hunting sonar to detect the mines, paired with a manned Seahawk helicopter which neutralizes the mines once they are found. The development team is also working with unmanned surface and air systems for autonomous mine sweeping, shallow water mine interdiction, and beach mine clearance. Nobody can argue with the idea that when clearing mines we should keep our Sailors out of the mine fields and let our unmanned systems take those risks. Last spring we had the first test flight of the MQ-4 Triton unmanned maritime patrol aircraft, and earlier this month it passed the half-way point in its flight testing. Its 131-foot wingspan – 30 feet wider than the manned P-3C Orion maritime patrol planes we have flown for decades – makes it today’s largest unmanned platform. Triton’s long, slender wings allow it to stay in the air with its sensors for a day at time, providing persistent maritime coverage to the warfighter. Combined with the aircrews and operators aboard our new P-8 Poseidon manned maritime patrol aircraft, Triton will identify and track targets as necessary, ensuring that the fleet has a complete picture of what is happening at sea. The Future Airwing The X-47B is the culmination of an experimental program to prove that unmanned systems can launch and recover from the aircraft carrier. The program that follows this demonstrator will radically change the way presence and combat power is delivered as an integral part of the future carrier air wing. Known by the acronym UCLASS, for Unmanned Carrier Launched Airborne Surveillance and Strike system, it will conduct its missions over very long periods of time and at extreme distances while contributing to a wide variety of missions. It will make the carrier strike group more lethal, effective, and survivable. The end state is an autonomous aircraft capable of precision strike in a contested environment, and it is expected to grow and expand its missions so that it is capable of extended range intelligence, surveillance and reconnaissance, electronic warfare, tanking, and maritime domain awareness. It will be a warfighting machine that complements and enhances the capabilities already resident in our carrier strike groups. Operating these platforms independently of a pilot, and with growing autonomy, greatly increases the possibilities for what we can do with them in the future. Unmanned carrier aircraft don’t require flights to maintain pilot proficiency; the operators can maintain their skills in the simulator. The planes will be employed only for operational missions, saving fuel costs and extending the service life of the aircraft. They also create the opportunity to advance new ways to use our aircraft, like developing new concepts for swarm tactics. We are finalizing the requirements that will lead to a design for the UCLASS. We aren’t building them yet. We want to ensure we get the requirements and design set right before we start production in order to avoid the mistakes and cost overruns which have plagued some past programs. Meanwhile our other unmanned systems like the Fire Scout and Triton continue their success. The Future of Naval Operations Across the entire spectrum of military operations, an integrated force of manned and unmanned platforms is the future. The X-47B’s arrested landing aboard USS GEORGE H.W. BUSH showed that the Navy and Marine Corps are riding the bow wave of technological advances to create this 21st century force. But it is our Sailors and Marines that will provide the innovative thinking and develop the new ideas that are crucial to our success. The unmanned systems and platforms we are developing today, and our integrated manned and unmanned employment methods, will become a central part of the Navy and Marine Corps of tomorrow. They will help ensure we continue to be the most powerful expeditionary fighting force the world has ever known. About the author: Ray Mabus is the 75th Secretary of the Navy, leading the U.S. Navy and Marine Corps. He has served as Governor of the State of Mississippi, Ambassador to the Kingdom of Saudi Arabia, and as a surface warfare officer aboard USS Little Rock (CLG-4). -ends-
12/11/2013

A Short History of US Air Force Drone Operations

LAS VEGAS, Nev. --- The RPA actually got its start as early as 1896, when something called aerodromes at the time, were used to test the capabilities of new flying devices and to test if it was even possible for a heavier-than-air craft to achieve sustained flight. In May 1896, Dr. Samuel Langley proved that mechanical flight was possible with his Aerodrome No. 5. From that point on, the shape, design and technology structure of the unmanned aircraft evolved over the years, improving each time. In 1918, the U.S. Army became interested in unmanned flight and ordered 25 Liberty Eagle aircraft. The intent was for the aircraft to be used as an aerial torpedo. Just over two decades later in 1941, the OQ-2 Radioplane became the first mass-produced unmanned aerial vehicle. By 1945, only a few years later, radioplane factories had produced around 15,000 aircraft for use as target drones. Since achieving the first sustained controlled flight, the idea of unmanned flight has grown to be one of the most useful aircraft technology systems in modern history. Today, RPAs have transformed from a basic tool into high-tech machines, providing assistance during both humanitarian and war time situations. 1990s - 2000: In January 1994, more than half a century after the advent of the first mass-produced UAV, the Air Force's modern-day remotely piloted aircraft program was born. General Atomics Aeronautical Systems, Inc. received an advanced concept technology demonstration contract to produce a medium altitude endurance "unmanned" aerial vehicle. This new system would be called the RQ-1 Predator and would be based off its precursor the GNAT 750, which initially debuted in 1989 and was used for long-endurance tactical surveillance. A mere six months after the contract was established, the new aircraft achieved its first flight in July 1994. While the flight was a success, the Air Force then had to bring in military pilots, navigator-trained rated officers and non-rated officers to learn to use the new technology. "I was the first person to receive a permanent change of station and the ninth person to actually enter into the program," said Lt. Col. Eric, 432nd Wing Director of Staff. "I came in short notice in November of 1995 from Cannon Air Force Base, N.M. In May 1996 I went to ground school in San Diego at the General Atomics headquarters. Afterward, I went to flight training at Fort Huachuca, Ariz., where the Army had the only system in the states at the time." John Box, a retired Air Force pilot, trained to become an RPA pilot in June 1996. He said because the system wasn't produced by the Air Force, the new equipment did not come with technical orders, making the task of learning how to use the system rather challenging. "Much of what we learned was by word of mouth from our instructors and not delivered in a military format," he said. "That took an adjustment and I found it frustrating and challenging but very exciting. I often had to deal with emergency situations that no one had ever before encountered. Every time I flew the system, I learned something new. We were developing books and adding new information to them daily. I wasn't trained for this type of work. Others may have got us started off on a better foot, but I believed in the concept and was committed to making it happen as best I could. It was a 'cowboy' atmosphere and I really enjoyed it." By 1995 it was decided that the Predator's capabilities were needed to aid U.N. and NATO efforts in Europe. The Predator and Air Force personnel were deployed to Taszar, Hungary, to provide support from 1995 until August 1998. Eric deployed to Hungary in August 1996 after completing training. It was during this deployment that he felt the continued challenges of integrating a new form of air power into the Air Force's inventory. "There were two Air Force pilots and a General Atomics instructor pilot with us ... only the three of us to accomplish the mission," he said. "There were no publications, technical orders, regulations or guidance that we hadn't created ourselves. We had to rewrite the very first technical orders that we were given and put them into Air Force terminology." Eric said maintainers were also dealing with some of the same issues as the pilots - learning by observation. "The General Atomics technician was there saying 'here's how we do the 50-hour engine inspection,' and our guys were watching him do it," he said. "But there were no publications or technical orders to break down the process of actually doing it. It took almost three years before we actually started getting valid technical orders on the systems, and it was the same the guidance and everything else. Today we are used to having regulations outlining how people do their jobs and laying down boundaries--we didn't have those." In October 1996 Eric found himself testing new waters for the Predator while facing the challenges of learning new technology and not having Air Force publications or technical orders to break down the processes. "On Oct. 1, 1996, during my deployment, I got the dubious distinction of being the first person in the military to be investigated for a safety investigation board for crashing a remotely piloted airplane," he said "At the time I was doing everything I could to save the airplane. That was my first and foremost concern, but because we didn't have any resources to help us, we kind of made it up as we went. We actually had a General Atomics engineer in the ground control station with us. We said, 'what if we try this?' and he would reply, 'well I don't know we've never tested that before.' We just didn't have any other choices so we were doing it the best that we could." In the end it was determined the crash occurred because the engine had been incorrectly rebuilt. Although the incident resulted in the loss of an aircraft, Eric said it was a learning experience. "We didn't have any publications to follow and we lost an airplane because of it," he said. "But, we learned a lot from it ... we were pioneers on the leading edge of this system making Air Force leaders understand what kind of capabilities this thing had, what we could do with it, and how to move forward with it." It was during this time when Eric and John were learning to fly the Predator that James Clark, at the time an Air Force colonel assigned to the Pentagon, was chosen by Gen. Ronald Fogleman, Chief of Staff, U.S. Air Force, to examine Predator operations. Clark, who is known as "Snake" by many, was chosen because he had no experience with RPAs. Fogleman wanted someone with an outsider's perspective. "What I found [during my study] was remarkable," he said. "This little drone could fly hundreds of miles away and provide color television and infrared video surveillance of enemy activity, without risking the life of a pilot. In a control van, which was a converted NASCAR transporter trailer, I watched pilots and sensor operations sitting in front of computer screens actually flying this thing - simply remarkable." While Snake was studying Predator operations in D.C., and pilots, mechanics and other RPA community members were providing assistance in deployed locations, Creech Air Force Base, Nev., was continuing to be built up in order to become home to the Air Force's premier RPA wing. The 11th Reconnaissance Squadron was the first squadron to stand up at Creech AFB. This milestone also marked the point when the Air Force RPA program's dynamic objectives took on a new strategic focus. After the squadron stood up the 11th RS deployed members to support Detachment 3, which was under Defense Advanced Research Projects Agency. "While deployed we were Detachment 3 under DARPA," Eric said. "When the Air Force took over we became the 11th Reconnaissance Squadron deployed; then once the Air Force turned to the expeditionary concept, [the squadron] became the 11th Expeditionary Reconnaissance Squadron. I was actually the first formal commander of the 11th ERS when it stood up. While the 11th ERS was deployed and redefining itself as a combat asset, Indian Springs Air Force Auxiliary Field was continuing to grow back home in preparation to become the home of additional RPA squadrons. "Indian Springs was a pretty bare base then," John said. "Most of the existing infrastructure was dilapidated, early Cold War era construction. They converted the small Base Exchange into our Intel vault and they renovated a small building across the street for our squadron operations facility. We ate at a small chow hall that originally supported up-range and transient aircraft operations. There was a recreation center/gym converted from several other old buildings 'kluged' together." Mardi Wilcox, who was the squadron maintenance officer in 1995, took her new task head on despite having few resources available at the time. "I was super excited to be selected as the first maintenance officer in the Air Force to be assigned to a UAV unit," she said. "It was cutting edge technology and the UAVs we had at the time were special in that way. No one else had them, and a lot of people had never heard of them. We were excited because there was no limit to what they could do ... we could only dream about what was to come. We had one double-wide trailer and one small hangar. Shelters for the UAVs were canvas structures across the ramp. It was 10 tons of stuff in a 1 ton bag." During the late 1990s the program was still in its beginning phases. For some this was exciting but to others it seemed less than promising. However, Wilcox said she had a much different outlook on the subject. "There were a lot of naysayers [at the time]," she said. "Many thought it was just another 'thing' that would just go away ... but our major command leadership made it work. I think for the most part my people loved it. It was new, it was on the leading edge and for the majority of my folks, we wanted it to work. We set the foundation for what the program is today." 2000 - Present: After Operation Allied Force wrapped up in mid-1999, the Air Force was left to figure out what to do with this still relatively new technology. By early 2000 the RQ-1 Predator, which had just proved its capabilities overseas, was armed and became known as the MQ-1 Predator. "As part of the 'lessons learned' from Operation Allied Force, it was determined that if the Predator had a weapon on it, we could cut the time between identifying a target and then destroying it," Snake said. "On Feb. 16, 2000, Predator 3034 took its first successful Hellfire shot from the air, and to all of our surprise, it worked." This new capability arrived just in time, as events on the morning of Sept. 11, 2001, changed many lives and the helped define the future of the Predator. "We watched the attack on the World Trade Center, until we were shocked by flight 77 as it crashed into the Pentagon," Snake said. "Late on the evening of Sept. 12, a lone C-17 took off from an airfield on the west coast with its cargo of Predators and Hellfire missiles. Days later, one of America's first responses to the terrorist attacks on 9/11 was in place and ready for combat." After 9/11 the MQ-1 Predator proved itself resilient and capable during operations Enduring Freedom and Iraqi Freedom. The success of RPAs during these operations resulted in an increased desire for RPA capabilities in future operations. Lt. Col. Russell, who was the RPA assignments officer at Air Force Personnel Center in 2005, remembers trained RPA pilots were a constant need for the Air Force. At the time, there were general officers everywhere who wanted every training spot filled in order to support U.S. and partner nation troops overseas. Pilots, maintainers and intelligence Airmen were pulled from several different platforms from across the Air Force to meet the demand RPA community's growing demands. In 2007, the 432nd Wing was activated at Creech AFB as the Air Force's first wing comprised entirely of RPAs, which was a sign of the program's rapid growth. A year later the demand for RPAs had grown so significantly that the wing expanded and became dual-hatted as the 432nd Wing/432nd Air Expeditionary Wing, capable of offering full-spectrum support to overseas operations while still supporting the 432nd Wing's operate, train and equip efforts. "In 2011, I came out to Creech and was qualified as a MQ-9 pilot," Russell said. "Having been a part of the assignment process in the past, it's good to see how the tribe has grown. The Air Force is very tribal; I used to be an F-15 pilot, so I used to be part of that 'tribe'. Now it's neat to see the growth of an RPA tribe, made up of people from all different backgrounds." As Russell arrived at Creech in 2011, the MQ-1 and its successor, the MQ-9 Reaper reached 1 million total flight hours - just 16 years after the program initially began. Just over two years later, on Oct. 22, 2013, the Air Force's MQ-1 and MQ-9 RPAs doubled that by achieving 2 million cumulative flight hours. Today, the MQ-1 and MQ-9 continue to be flown from 8,000 miles away in Afghanistan in support of Operation Enduring Freedom, patrolling the skies and providing critical support and protection to U.S. and coalition forces on the ground. It is because of the dedication and diligence of the men and women past and present that the RPA community has gotten where it is today. As a testament to the vital role of the RPA community during the past 18 years, Predator 3034, the first RPA to test the Hellfire, and the first to shoot in combat on Oct. 7, 2001, is now displayed at the Smithsonian National Air and Space Museum in Washington, D.C. -ends-
27/09/2013

GAO Faults UCLASS Acquisition Plan

In fiscal year 2014, the Navy plans to commit to investing an estimated $3.7 billion to develop, build, and field from 6 to 24 aircraft as an initial increment of Unmanned Carrier-Launched Airborne Surveillance and Strike (UCLASS) capability. However, it is not planning to hold a Milestone B review--a key decision that formally initiates a system development program and triggers key oversight mechanisms--until after the initial UCLASS capability has been developed and fielded in fiscal year 2020. The Navy views UCLASS as a technology development program, although it encompasses activities commensurate with system development, including system integration and demonstration. Because the initial UCLASS system is to be developed, produced, and fielded before a Milestone B decision, Congress's ability to oversee the program and hold it accountable for meeting cost, schedule, and performance goals will likely be limited. Specifically, the program will operate outside the basic oversight framework provided by mechanisms like a formal cost and schedule baseline, statutory unit cost tracking, and regular reports to Congress on cost, schedule, and performance progress. The Navy believes its approach effectively utilizes the flexibility in the Department of Defense's (DOD) acquisition policy to gain knowledge needed to ensure a successful UCLASS system development program starting in fiscal year 2020. Yet the Navy expects to review preliminary designs, conduct a full and open competition, and award a contract for UCLASS development in fiscal year 2014, a point at which DOD policy and best practices indicate that a program would be expected to hold a Milestone B review to initiate a system development program. Apart from deferring Milestone B, the Navy's plan would be consistent with the knowledge-based acquisition process reflected in DOD policy. UCLASS faces several programmatic risks going forward. First, the UCLASS cost estimate of $3.7 billion exceeds the level of funding that the Navy expects to budget for the system through fiscal year 2020. Second, the Navy has scheduled 8 months between the time it issues its request for air vehicle design proposals and the time it awards the air vehicle contract, a process that DOD officials note typically takes 12 months to complete. Third, the UCLASS system is heavily reliant on the successful development and delivery of other systems and software, which creates additional schedule risk. Fourth, the Navy will be challenged to effectively manage and act as the lead integrator for three separate but interrelated segments--air vehicle, carrier, and control system--and 22 other government systems, such as the aircraft landing system, the timing and alignment of which are crucial to achieving the desired UCLASS capability. While the Navy recognizes many of these risks and has mitigation plans in place, they could lead to cost increases and schedule delays if not effectively addressed. The Navy's UCLASS acquisition strategy includes some good acquisition practices that reflect aspects of a knowledge-based approach. For example, the Navy is leveraging significant knowledge gained from prior technology development efforts, incorporating an open systems design approach, working to match the system's requirements with available resources, and reviewing preliminary designs for the air vehicle before conducting a competition to select a single contractor to develop and deliver the air vehicle segment. Why GAO Did This Study The Navy estimates that it will need $3.7 billion from fiscal year 2014 through fiscal year 2020 to develop and field an initial UCLASS system. The National Defense Authorization Act for Fiscal Year 2012 mandated that GAO evaluate the UCLASS system acquisition strategy. This report (1) assesses the UCLASS acquisition strategy, (2) identifies key areas of risk facing the system, and (3) notes areas where the Navy's strategy contains good practices. To do this work, GAO reviewed the Navy's acquisition strategy and compared it to DOD's acquisition policy, among other criteria; and reviewed Navy acquisition documents and spoke with Navy and Office of the Secretary of Defense officials. What GAO Recommends Congress should consider directing the Navy to hold a Milestone B review for the UCLASS system after the system level preliminary design review is complete. If the Navy does not comply, Congress should consider limiting the amount of funding available for the UCLASS system until an acquisition program baseline is provided. GAO included these matters for consideration because the Navy does not plan to make changes as a result of GAO’s recommendation to hold a Milestone B review following the system level preliminary design review—which is currently scheduled in fiscal year 2015. The Navy did not concur with the recommendation, and believes that its approved strategy is compliant with acquisition regulations and laws. GAO continues to believe that its recommendation is valid as discussed in this report. Click here for the full report (26 PDF pages) on the GAO website. -ends-
09/09/2013

US Lagging in Open Systems for UAVs

Source: US Government Accountability Office Ref: GAO-13-651 Issued July 31, 2013 37 PDF pages This report addresses (1) the characteristics and benefits of an open systems approach, (2) DOD’s efforts in implementing an open systems approach for its UAS portfolio, and (3) challenges, if any, DOD is encountering in implementing this approach. GAO analyzed relevant literature and DOD policies on open systems and interviewed agency and private industry officials to understand how open systems have been implemented and their benefits. In addition, GAO assessed acquisition documents and questionnaire responses from 10 current and planned UAS programs to determine their open system strategies. What GAO Found An open systems approach, which includes a modular design and standard interfaces, allows components of a product (like a computer) to be replaced easily. This allows the product to be refreshed with new, improved components made by a variety of suppliers. Designing weapons as open systems offers significant repair, upgrade, and competition benefits that could translate to millions of dollars in savings as the weapons age. Other benefits are shown in the figure below. The services vary in their use of open systems on the Department of Defense’s (DOD) 10 largest unmanned aircraft systems (UAS). The Navy used an open systems approach at the start of development for the air vehicle, ground control station, and payloads (i.e., cameras and radar sensors) for three of its four current and planned UAS and anticipates significant efficiencies. For example, Navy and contractor officials expect the Small Tactical UAS to be able to integrate at least 32 payloads developed by 24 manufacturers, some in a matter of days or months rather than years as previous programs experienced. Conversely, none of the Army or Air Force UAS programs initially implemented an open systems approach, relying instead on prime contractors to upgrade and modernize the UAS. The Army is now developing an open ground control station for each of its three legacy UAS programs. Only one of the Air Force’s three UAS programs plans to implement an open systems approach on fielded aircraft. Policies and leadership can help drive DOD’s acquisition community to use an open systems approach, but challenges exist. Although DOD and the services have policies that direct programs to use an open systems approach, the Navy is the only service that largely followed the policy when developing its UAS. In addition, while new open systems guidance, tools, and training are being developed, DOD is not tracking the extent to which programs are implementing this approach or if programs have the requisite expertise to implement the approach. Navy UAS program officials told us they relied on technical experts within Naval Air Systems Command to help develop an open systems approach for their programs. Until DOD ensures that the services are incorporating an open systems approach from the start of development and programs have the requisite open systems expertise, it will continue to miss opportunities to increase the affordability of its acquisition programs. (PDF format) Full text