Developed by Chengdu Aircraft Design and Research Institute (CADI) of the state-owned Aviation Industry Corporation of China, the Wing Loong II is fitted with six underwing weapon pylons and a chin-mounted sensor ball. (Xinhua photo)

Breaking News

see all items

Press Releases

see all items


US Navy Touts Sea Hunter, Tern at Sea Air Space Meet

ARLINGTON, Va. --- Advanced software that can transform existing medium-sized vessels into unmanned ships able to autonomously complete naval missions. A four-legged, bio-inspired robot that can perform reconnaissance or dispose of explosives safely. A drone that merges the flying capabilities of a helicopter and airplane. These are just a few of the technologies the Office of Naval Research (ONR) and the Naval Research Laboratory (NRL) will showcase at the 2017 Sea-Air-Space Exposition, to be held April 3-5 at the Gaylord Convention Center in National Harbor, Maryland. "The Navy League's Sea-Air-Space Exposition provides a great opportunity to share information between representatives of the services, industry and academia, while showcasing ONR's cutting-edge research and technology programs," said Chief of Naval Research Rear Adm. David J. Hahn. "These partnerships will be crucial to maintaining our nation's lead in technology development, particularly in the areas of distributed lethality, unmanned systems and cyber defense." Program officers from ONR and NRL will be on hand in the booth to discuss their pioneering work and potential research opportunities. Some of the breakthrough technologies to be highlighted include: -- Medium-Displacement Unmanned Surface Vessel (MDUSV): Attendees can view a detailed, four-foot model of Sea Hunter, the test platform for the MDUSV autonomy software, which was developed in partnership between ONR and the Defense Advanced Research Projects Agency (DARPA). The MDUSV software will enable future unmanned, autonomous ships to better counter mines and track submarines, travel for longer periods of time without refueling, and use anti-collision technology which complies with maritime law and regulations for preventing collisions at sea. -- MeRLIn (Meso-scale Robotic Locomotion Initiative): MeRLIn is a bio-inspired, 10-pound robot designed to jump and climb. Hydraulic-powered, the robot may one day conduct scouting, reconnaissance or explosive ordnance missions for Marines. -- Tern (Tactically Exploited Reconnaissance Node): Attendees can see a model of Tern, a versatile flying scout drone developed by ONR and DARPA. Tern can perch on ships, even those without runways, and take off vertically like a helicopter before transitioning to plane-like horizontal flight in midair. Sea-Air-Space is hosted by the Navy League of the United States with the goal of bringing together leaders from defense organizations -- both government and private industry -- to learn about and view the most up-to-date information and technology related to maritime policy. In addition to Sea-Air-Space, the Gaylord will host the Naval Science, Technology, Engineering and Math (STEM) Exposition, April 2, from 1 p.m. to 5 p.m. Hahn will address the audience at 1:15 p.m. to discuss the importance of education and the need for a STEM-educated workforce. The Naval STEM Exposition, co-sponsored by ONR and the Navy League STEM Institute, is free and geared toward students in grades six through 12. It will provide middle and high school students with an introduction to naval STEM careers and applications through guest speakers and hands-on activities. Running concurrently with Sea-Air-Space is the Navy Forum for SBIR/STTR Transition (FST), which also is scheduled April 3-5 at the Gaylord. FST connects technologies funded by the Navy's Small Business Innovation Research and Small Business Technology Transfer programs with government acquisition and technical personnel, as well as other potential partners. -ends-

Canada Supports Kraken Underwater Robotics Development

ST. JOHN'S, NL. --- Kraken Sonar Inc. (Kraken) announced today that its wholly-owned subsidiary, Kraken Sonar Systems Inc., will receive a non-refundable financial contribution of up to $1,470,000 from the National Research Council of Canada Industrial Research Assistance Program (NRC-IRAP). In addition to technical and business advisory services provided by NRC-IRAP, the funding is being used to support the development of Kraken's underwater robotics program, which involves development of a technology demonstration platform. The first phase of the program will utilize the Fraunhofer Institute's DEDAVE Autonomous Underwater Vehicle (AUV) as the base platform. The AUV will be enhanced with hydrodynamic, control system and payload upgrades. Karl Kenny, Kraken's President and CEO, said, "We sincerely appreciate the continued support and assistance from the National Research Council of Canada Industrial Research Assistance Program (NRC-IRAP) to help us further penetrate the $600 million AUV market. Over the past few years, AUVs have evolved from an emerging, niche technology to a viable solution and an established part of operations in both military and commercial applications. Given the recent shift in industry focus from AUVs being platform/hardware-centric to becoming sensor/software-centric, we believe there is significant potential for further growth. By combining our advanced sensor technologies with cutting edge artificial intelligence algorithms, it's our objective to deliver a cost-effective AUV solution that is truly autonomous as opposed to being simply automated." The global AUV market is experiencing an advanced rate of growth due to increasing demand in military, commercial and scientific research applications. Significant growth is expected in the commercial sector, predominately from oil and gas operators -- despite the volatility of oil prices. There has also been substantial interest in the technology from the offshore renewable energy sector, as operators have begun to understand the cost saving potential of AUVs for inspection of underwater assets. Research from industry analysts Technavio forecasts that the global AUV market is expected to grow from US$600 million in 2015 to over US$2 billion by 2020. The World AUV Market Forecast from Douglas-Westwood covers all key commercial themes relevant to companies across the value chain in all AUV sectors. The report considers the prospective demand for AUVs in the commercial, military and research sectors over the next several years. Unit demand is expected to increase over the forecast at a CAGR of 10%, with all sectors seeing growth due to increased utilisation of AUV technology. The military is expected to remain the greatest user of AUVs with demand in 2020 for over 700 units, representing 73% of total demand. The DEDAVE's current primary payload is Kraken's 6000m depth rated AquaPix MINSAS-60 Synthetic Aperture Sonar. The MINSAS-60 will be upgraded to an AquaPix MINSAS-120 with Real-Time embedded SAS processor (RTSAS), increasing the area coverage rate to 2 km2 per hour at 3cm x 3cm resolution. The addition of Kraken's RTSAS and SoundView onboard geo-referencing software will enable onboard, real-time sonar data processing, image mosaicking and on-the-fly 3D seabed mapping. A new underwater laser scanner will also be integrated to provide sub-millimeter resolution and full color, georeferenced 3D point clouds. The AUV's mechanical structure and hydrodynamic design will be optimized for the new payloads, increasing hydrodynamic efficiency and supporting unique new features. The addition of multiple tunnel thrusters will enable a hovering capability and upgrades to the vehicle's control system architecture will provide station-keeping, path-following and precision maneuvering for stationary target inspection. The AUV will also be used to test and evaluate newly developed artificial intelligence algorithms for vehicle autonomy, machine learning, non-linear missions and automated target detection. Kraken Sonar Inc. is a marine technology company, founded in 2012, that is dedicated to the production and sale of software-centric sensors and underwater robotic systems. For more information, please visit -ends-

General Atomics to Extend Range of Reaper UAVs

General Atomics, Aeronautical Systems Inc., Poway, California, has been awarded a $12,250,789 cost-plus-fixed-fee contract on basic ordering agreement FA8620‐15‐G‐4040. Contractor will fabricate 10 of each: -- MQ-9 Block 5 extended range installation kits, -- MQ-9 Block 5 Barrett Asymmetric Digital Datalink Computer installation kits, -- MQ-9 Block 5 Beyond Line of Sight installation kits, -- MQ-9 Block 5 VORTEX installation kits, -- verification/finalization of Installation Kit Interactive Electronic Technical Manual kit documentation, and installation of the aforementioned kits onto MQ-9 Block 5 aircraft. Work will be performed at Poway, California, and is expected to be complete by March 20, 2019. Fiscal 2017 procurement funds have been obligated in the amount of $9,731,841 at the time of the award. This award is the result of a sole-source acquisition, and one offer was solicited and received. Air Force Lifecycle Management Center, Medium Altitude Unmanned Aircraft System, Wright Patterson Air Force Base, Ohio, is the contracting activity (FA8620-17-F-2351). -ends-

Darpa Awards Phase 2 Contracts for Gremlins UAV Program

DARPA recently completed Phase 1 of its Gremlins program, which envisions volleys of low-cost, reusable unmanned aerial systems (UASs)—or “gremlins”—that could be launched and later retrieved in mid-air. Taking the program to its next stage, the Agency has now awarded Phase 2 contracts to two teams, one led by Dynetics, Inc. (Huntsville, Ala.) and the other by General Atomics Aeronautical Systems, Inc. (San Diego, Calif.). “The Phase 1 program showed the feasibility of airborne UAS launch and recovery systems that would require minimal modification to the host aircraft,” said Scott Wierzbanowski, DARPA program manager. “We’re aiming in Phase 2 to mature two system concepts to enable ‘aircraft carriers in the sky’ using air-recoverable UASs that could carry various payloads—advances that would greatly extend the range, flexibility, and affordability of UAS operations for the U.S. military.” Gremlins Phase 2 research seeks to complete preliminary designs for full-scale technology demonstration systems, as well as develop and perform risk-reduction tests of individual system components. Phase 3 goals include developing one full-scale technology demonstration system and conducting flight demonstrations involving airborne launch and recovery of multiple gremlins. Flight tests are currently scheduled for the 2019 timeframe. Named for the imaginary, mischievous imps that became the good luck charms of many British pilots during World War II, the program envisions launching groups of UASs from multiple types of military aircraft—including bombers, transport, fighters, and small, unmanned fixed-wing platforms—while out of range of adversary defenses. When the gremlins complete their mission, a C-130 transport aircraft would retrieve them in the air and carry them home, where ground crews would prepare them for their next use within 24 hours. The gremlins’ expected lifetime of about 20 uses could provide significant cost advantages over expendable unmanned systems by reducing payload and airframe costs and by having lower mission and maintenance costs than conventional manned platforms. -ends-

KnifeFish UUV Completes Mine-hunting Evaluation

QUINCY, Mass. --- The General Dynamics Mission Systems Knifefish team successfully completed a comprehensive evaluation of Knifefish, an autonomous surface mine countermeasure (SMCM) unmanned undersea vehicle (UUV). In coordination with the U.S. Navy, the test events took place off the coast of Boston using submerged Navy mine test targets. The evaluation represents a significant milestone in the Knifefish program and demonstrates the UUV's capability to detect and classify potential mines, at a variety of depths, each posing a unique threat to naval vessels operating in a mission area. "The information and situational awareness Knifefish will deliver to sailors is a quantum leap in clarity and accuracy over other mine-hunting systems currently used by the Navy," said Carlo Zaffanella, vice president and general manager of Maritime and Strategic Systems for General Dynamics Mission Systems. Simulating mine-hunting missions, the UUV located and classified mine test targets submerged at various depths and on the seafloor. Knifefish is also capable of locating and identifying mines buried in the seafloor. "The Navy continues to work with its industry partner, General Dynamics Mission Systems, to develop, test, and deliver the needed Knifefish capability to the fleet," Capt. Jon Rucker, Program Manager for the Navy's Unmanned Maritime Systems Program Office (PMS406) said. "The system performed well against a variety of surrogate targets and we are confident we will refine its performance to support the planned schedule in 2017." Knifefish will undergo additional at-sea testing this year to further refine system performance in advance of formal System Acceptance Testing with the Navy. A U.S. Navy program, Knifefish is a heavyweight-class mine countermeasure UUV intended for deployment from Navy surface vessels. Knifefish will reduce risk to personnel by operating in the minefield as an off-board sensor while the host ship stays outside the minefield boundaries. General Dynamics Mission Systems is the prime contractor for the Knifefish program. The company designed the tactical UUV using an open architecture concept that can be quickly and efficiently modified to accommodate a wide range of missions that may face future naval operations. The Knifefish UUV is based on the General Dynamics Bluefin Robotics Bluefin-21 deep-water AUV. -ends-

Maintenance Oversight Caused MQ-1B Predator Crash

LANGLEY-EUSTIS, Va. --- A mechanical failure leading the engine to overheat caused the crash of an MQ-1B Predator Oct. 19, 2015, according to an Abbreviated Accident Investigation Board report released today. The aircraft was conducting a surveillance mission in support of Operation Inherent Resolve at an undisclosed overseas location at the time of the mishap. There were no injuries or damage to civilian property as a result of the mishap and all wreckage was recovered. The board president found, by a preponderance of evidence, that the cause of the mishap was a pinhole leak in the elbow radiator of the coolant supply line. Maintenance personnel did not detect that the coolant supply line and a different line had been placed too close to each other, resulting in rubbing, chafing, and the pinhole leak. The loss of coolant inadvertently resulted in increased fuel flow, further degrading engine performance. The aircraft was operated by personnel from the 20th Reconnaissance Squadron, Whiteman Air Force Base, Missouri. The loss of the aircraft was valued at approximately $4.66 million. According to the report, the mishap crew attempted to return the aircraft to base after noticing abnormal engine temperatures but was unable to maintain the aircraft’s safe altitude in a mountainous region. Despite implementing recovery procedures, there was no change to the overheat condition, and the aircraft continued to fly at a lower altitude. Once it was determined that the aircraft would be unable to successfully return to base, the crew executed a forced landing in an unpopulated field. -ends-

"Enormous Overkill" As Patriot Shoots Down Small Drone

A Patriot missile was used to shoot down a small quadcopter drone, it's been revealed. US General David Perkins told a military symposium that a "very close ally" used the weapon, usually priced at about $3 million (£2.5m), to destroy its target, according to the BBC. The radar-targeted missiles are commonly used to shoot down enemy aircraft and ballistic missiles. General Perkins said: "That quadcopter that cost 200 bucks from Amazon did not stand a chance against a Patriot." "Now, that worked, they got it, OK, and we love Patriot missiles." It comes after reports that extremist groups have been attaching weapons to small, commercial drones. Gen Perkins admitted, however, that deploying large surface-to-air missiles as a defence was probably not economically prudent. He continued: "I'm not sure that's a good economic exchange ratio. In fact, if I'm the enemy, I'm thinking, 'Hey, I'm just gonna get on eBay and buy as many of these $300 quadcopters as I can and expend all the Patriot missiles out there'." Royal United Services Institute researcher Justin Bronk, meanwhile, said: "It is clearly enormous overkill. It certainly exposes in very stark terms the challenge which militaries face in attempting to deal with the adaptation of cheap and readily available civilian technology with extremely expensive, high-end hardware designed for state-on-state warfare." Patriot missiles travel at five times the speed of sound, while quadcopter drones usually have top speeds of 50mph. First produced in 1980, they're operated by 12 countries including the US, the Netherlands, Germany, Japan, Israel and Saudi Arabia. -ends-

Leidos Offers New Notification Service for UAVs

RESTON, Va. --- Leidos Flight Service has created an unmanned aircraft systems (UAS) service that helps safeguard the airspace by sending automatic notifications of unmanned aircraft operations to relevant groups. The Leidos UAS Notification Service is being tested as part of the Federal Aviation Administration UAS Pathfinder Program with Burlington Northern Santa Fe (BNSF) railways to explore concepts for "beyond visual line-of-sight" operations of small, unmanned aircraft. Conflicts with high-speed military aircraft can arise when UAS operations cross military training routes, or when planned commercial UAS and military operations take place simultaneously. The service facilitates the resolution of these overlaps—a process referred to as deconfliction. UAS Operators access the internet-based service to file "flight plans" for their UAS operating areas, typically a section of rail or a bridge that is being inspected. The service then automatically generates and sends all required notifications, including to applicable military personnel and a "Notice to Airmen"—which alerts pilots of potential hazards that could affect flight safety. Leidos Flight Service also sends alerts to general aviation pilots that will be flying in the same area while the UAS is operating. The service, which commenced in September 2016, is being incrementally implemented and currently being used for UAS operations over sections of railroads in New Mexico. "In addition to the traditional methods of inspecting railways, unmanned aircraft provide an efficient, cost-effective way to maintain their tracks," said Mike Glasgow, Leidos Fellow, Notification Service Chief Architect. "This process ensures all applicable parties and aircraft in the area are informed ahead of their UAS operations for safety." The new service is an extension of the UAS Operating Area filing capability available at Leidos' and through web services for routine commercial UAS use. The Leidos Flight Service will expand the program to support other UAS operators in the near future. "Our Flight Service program provides a range of safety-oriented services to more than 80,000 members of the general aviation community across the country each week. This UAS notification and deconfliction service broadens that safety mission by providing pilots with the information needed to avoid conflicts as more and more unmanned aircraft take to the skies," said Paul Engola, Senior Vice President of Transportation and Financial Solutions, Leidos Civil Group. "We will continue to develop concepts and capabilities that enable safe integration of UAS into the airspace." Leidos is a global science and technology solutions and services leader working to solve the world's toughest challenges in the defense, intelligence, homeland security, civil and health markets. The company's 32,000 employees support vital missions for government and commercial customers. Headquartered in Reston, Virginia, Leidos reported annual revenues of approximately $7.04 billion for the fiscal year ended December 30, 2016. -ends-

Darpa Working to Recover UAVs on the Fly

DARPA recently completed Phase 1 of its Gremlins program, which envisions volleys of low-cost, reusable unmanned aerial systems (UASs)—or “gremlins”—that could be launched and later retrieved in mid-air. Taking the program to its next stage, the Agency has now awarded Phase 2 contracts to two teams, one led by Dynetics, Inc. (Huntsville, Ala.) and the other by General Atomics Aeronautical Systems, Inc. (San Diego, Calif.). “The Phase 1 program showed the feasibility of airborne UAS launch and recovery systems that would require minimal modification to the host aircraft,” said Scott Wierzbanowski, DARPA program manager. “We’re aiming in Phase 2 to mature two system concepts to enable ‘aircraft carriers in the sky’ using air-recoverable UASs that could carry various payloads—advances that would greatly extend the range, flexibility, and affordability of UAS operations for the U.S. military.” Gremlins Phase 2 research seeks to complete preliminary designs for full-scale technology demonstration systems, as well as develop and perform risk-reduction tests of individual system components. Phase 3 goals include developing one full-scale technology demonstration system and conducting flight demonstrations involving airborne launch and recovery of multiple gremlins. Flight tests are currently scheduled for the 2019 timeframe. Named for the imaginary, mischievous imps that became the good luck charms of many British pilots during World War II, the program envisions launching groups of UASs from multiple types of military aircraft—including bombers, transport, fighters, and small, unmanned fixed-wing platforms—while out of range of adversary defenses. When the gremlins complete their mission, a C-130 transport aircraft would retrieve them in the air and carry them home, where ground crews would prepare them for their next use within 24 hours. The gremlins’ expected lifetime of about 20 uses could provide significant cost advantages over expendable unmanned systems by reducing payload and airframe costs and by having lower mission and maintenance costs than conventional manned platforms. -ends-

SNC Looks for New Users of Dream Chaser Program

NEWTOWN, Conn. --- Sierra Nevada Corp scored a major victory when NASA awarded it one of three contracts to carry supplies to the International Space Station (ISS). With the CRS-2 win, Sierra Nevada Corp will now receive a large amount of cash flow that will be a boon to the Dream Chaser program. It will also give the company a launch customer, enabling it to begin production. With human spaceflight attracting increased attention in the commercial market, SNC will have an advantage by having a space transport vehicle already in production. There are many competitors in the human spaceflight market, including Virgin Galactic, Blue Origin, and others. The companies that have vehicles that are already in production and operation along with paying customers generating cash flow will have a distinct advantage in this field. For example, XCOR Aerospace, which does not have a contract with any government, now is changing focus and laying off staff. Sierra Nevada Corp now joins the likes of SpaceX, Orbital ATK, and Boeing with a large customer in NASA. SNC has also had success developing relationships outside the U.S., and now has a contract with the UN to show for it. The exact production plan remains in question. SNC has designed the Dream Chaser to be reusable. However, it is possible that early versions will not be used after their first launch. It is likely that SNC will follow a similar path to SpaceX, which can reuse the Dragon capsule but has not yet done so under a CRS contract. For that reason, under contract between 2019 and 2024, Forecast International expects one Dream Chaser to be produced for each of six missions. Another will be reproduced for the UN. After that point, Dream Chasers will likely be reused for commercial or other missions. Production rates will decline to replace attrition at that point. -ends-

Analysis and Background

see all items


Fly-offs for French Tactical UAV Competition Begin This Month

PARIS --- France’s defense procurement agency will begin the in-flight evaluation of competitors for the future SDT tactical UAV system later this month, allowing selection of the winner by year-end after a second-round review in the fall. The evaluations, each lasting one or two weeks, will take place at Istres air base in south-eastern France. The SDT evaluations will oppose two French companies offering foreign-designed airframes with subsystems and electronics tailored to French needs: Sagem, which is offering its Patroller, and Thales, which is offering the Watchkeeper developed by its British subsidiary, Thales UK, for the British Army. Watchkeeper will be evaluated in late June, and Patroller will follow in early July. Airbus Defence and Space, which had not been invited to bid for the Système de Drone Tactique (SDT) program, submitted an unsolicited offer earlier this year based on the Textron Systems Shadow M2 unmanned system, which it has dubbed Artemis. The company is waiting for feedback from DGA and the French army on its unsolicited offer before making a full-fledged bid. Uncertainties remain as to SDT funding The French army has not specified a number of aircraft or systems, but has defined an operational requirement, leaving industry to come up with proposals on how best to meet it. However, as it now operates 22 Sperwer tactical drones, it is likely that it will ultimately require about 30 Système de Drone Tactique (SDT) aircraft divided into four deployable systems. “The 2014-2019 Military Program Law calls for two complete and deployable SDT systems, comprising 14 operational and training aircraft, to be delivered by 2019,” a DGA spokesman told June 10. He added that the competition was formally launched during the fall of 2014, and that it is proceeding as planned, but declined further comment because the competition is ongoing. There are some doubts, given the French air force’s large-scale procurement of Reaper MALE UAVs, the planned development of the Eurodrone 2020 MALE, and the availability of smaller tactical UAVs, whether the French army actually needs to spend so much money to buy large UAVs of its own. “The current worry is that the program might not be completed, as the requirements are very ambitious and demanding, and there is no officially-defined budget,” says a senior official of one of the competing companies. In fact, the SDT program was barely mentioned during May 26 parliamentary hearings on the update to the 2014-2019 defense program law. Gen. Jean-Pierre Bosser, the army chief of staff, simply said that “we expect our current interim SDTs to be replaced by an SDT system,” before moving on to other issues. All three competitors stress the high French content of their offers, the high proportion of production work that will take place in France, and the fact that their solution offers sovereign, autonomous capabilities entirely free of foreign interference, for both operation and support. Sagem, with its Sperwer, is the incumbent; its latest contract was awarded in December 2013, and funded five additional Sperwer systems for delivery in 2015. In addition to those already in service with the 61ème Régiment d’Artillerie, these UAVs will maintain French army capabilities until a replacement enters service by the end of the decade. The three competitors offer three totally different approaches to the French requirement. All three offer broadly similar sensors, but differ notably in their air vehicles, which range from Sagem’s optionally-piloted and self-deployable motor glider; Thales’ updated and “Frenchified” Hermes UAV to the much smaller, and optionally catapult-launched, Shadow M2 planned by Airbus DS. In fact, the difference in size is such that the 250 kg payload of Sagem’s Patroller is heavier than an entire Shadow air vehicle, while at 450 kg empty mass Watchkeeper is less than half as heavy as Patroller. In other words, Watchkeeper is twice as heavy as Artemis, and in turn Patroller is about twice as heavy as Watchkeeper, although they all carry similar types of payloads. Given France’s insistence on maintaining its independent deployment capability, the level of technical and operational sovereignty, and the control of the supply chain, is likely to weigh heavily during the final selection. Watchkeeper Goes French Sagem’s main competitor for the French SDT contract is Thales UK’s Watchkeeper , which was developed from the Elbit Systems Hermes 450 design and adapted to UK requirements. The British Army has ordered 13 Watchkeeper systems, for a total of 54 air vehicles, about 30 of which have been delivered to date. Watchkeeper was deployed by the British Army in Afghanistan. Several aircraft arrived at Camp Bastion, in Afghanistan’s Helmand province, in August 2014, and flew its first combat mission on Sept. 16, Lt Col Craig Palmer, the point man for UAVs at British Army HQ, told reporters here June 2. However, it will not attain Full Operational Capability until 2017, he said. Watchkeeper has flown about 500 hours with the British Army, Palmer said, of which 140 hours in Afghanistan and 360 hours from its base in Boscombe Down, in England. British troops prepare a Watchkeeper unmanned aerial vehicle for a mission at Camp Bastion, in Afghanistan’s Helmand Province. (UK MoD photo) “Watchkeeper was designed from the outset to generate information superiority [and] its world-class I-Master radar is what is actually adding value. It’s a game-changer” compared to the Hermes, which has no radar, Palmer said. The Watchkeeper variant Thales has offered to France is equipped with mostly French subsystems, including a secure datalink, the same Automatic Take-Off and Landing System (ATOLS) that Thales developed for Watchkeeper, and Thales’ own electro-optical sensors. For the time being, the French army has been offered a Selex ES surface search radar, but alternate radars can also be fitted. For the French proposal, the joint Elbit/Thales datalink fitted to UK Watchkeeper has been replaced by a Thales-developed TMA/TMG 6000 dual-mode (command and ISR data) datalink, and Thales Executive Vice-President for Telecommunications Marc Darmon says the company has all the Intellectual Property (IP) rights to this product, which is obviously significant for national sovereignty issues. “We bought the source codes and we largely re-wrote them, so we have total control of the system,” says another Thales executive, dismissing concerns that foreign companies are involved in the French Watchkeeper proposal. At present, 80% of Watchkeeper components are British-made, with another 15% coming from France and 5% from the rest of the world, according to Pierrick Lerey, strategy and marketing director for Thales’ UAV and ISR business. The company has formed a French suppliers club ( to update Watchkeeper’s main systems, including a new-generation electro-optical payload; a new Communications and ESM payload; a new imagery chain for full HD video; interconnection with the French military C4ISR network, a new ground station and a remote video terminal. The goal, Lerey says, is to bring French content up to at least 35% for the French program, since the Watchkeeper airframe and the (new) ground stations will continue to be built in the UK. Sagem’s Optionally-Piloted Motor Glider While its competitors opted for specific, UAV-sized airframes, Sagem preferred to use a civil-certified airframe for its Patroller, which is almost as large as a MALE drone but offers the advantage of being derived from a German motor glider, the Stemme S-15. Frederic Mazzanti, Sagem Vice-President and head of its Optronics and Defense Division, notes that this means it can self-deploy using civil airspace, that it can be used for training in unsegregated airspace with a pilot on board, and that it does not need tractors or other ground equipment because it was designed to be autonomous on the ground. Patroller’s size also means it offers lots of space for fuel and sensors, and the commercial origin of its airframe means it was designed for simple, straightforward repairs with little tooling, another plus for austere operations. A soldier shows the large sensor ball of Sagem’s Patroller UAV, a large, optionally-piloted aircraft that offers much greater range and payload than its competitors (Sagem photo) Sagem’s offer comprises triplex-redundant avionics, a new fourth-generation Euroflir 41 sensor ball with a 43-cm diameter and fitted with full HD color TV, visible and thermal imaging, and laser rangefinder and designator. Several synthetic aperture radars can be fitted, depending on the customer’s preferences, and several have already been tested. Most importantly, says Mazzanti, Patroller has the capability to operate radar and EO sensors at the same time, and also to transmit their imagery at the same time. This, he notes, is a unique capability in this category, and can multiply an ISR aircraft’s effectiveness by tracking several targets with different sensors at the same time. Most Patroller subsystems and sensors are produced by Sagem itself (EO sensor ball, navigation, datalink) while the others are French-made. Sagem also owns all property rights to the airframe, so the fact that no foreign company is involved guarantees manufacturing and operational sovereignty. With its Sperwer drones, which were operated in Afghanistan by several of the nine countries that have bought it, Sagem gained precious operational experience. The French army’s 22 Sperwers attained an availability rate of 80-85% with support from Sagem. “Our availability in terms of aircraft numbers never fell short of requirements,” Mazzanti said, adding that as operators of the S-15 have logged over 1,000 flight hours per year, there is no reason for Patroller not to attain similar levels. Sagem employs over 100 people at its French plants to build Sperwer drones and its components, and the company also has assembled a cluster of SMEs to which it subcontracts some of the work. All in all, Sagem says that French content of Patroller will attain 85% by value, as only the radar and airframe would be built overseas. With a payload of 250 kg, and a mission endurance of 30 hours, Patroller is a much larger aircraft than its competitors, but Mazzanti dismisses criticism that it may be too large for its intended mission. “It is air-transportable, it fits into a standard 20-foot container, it can land with a 20-knot crosswind and it can pull 5Gs, so its size and robustness are real operational advantages.” Outsider Airbus Teams with Textron Thales and Sagem both “offered large air vehicles that are closer to MALE size, but looking at the French army requirement we thought that a smaller drone, capable of being operated from close to the front line, would be a better match,” an Airbus official said June 9. Instead of offering one of its own UAVs, the company preferred to team with Textron Systems to prepare a bid based on a tried-and-tested UAV that more closely matches the French army requirement, and which is small enough for use at brigade or division, instead of corps, level. LEGENDE: Airbus DS has offered to “Frenchify” Textron’s Shadow to develop its Artemis UAV, which is much smaller than the two SDT competitors and doesn’t need a runway, as it can be launched from a catapult. (US Army photo) Airbus has not yet formally filed a bid, and will only announce its Artemis partnership with Textron next week at the Paris Air Show. The company has so far only submitted an unsolicited proposal to DGA, and is waiting for feedback before deciding whether to invest in a formal and comprehensive proposal. Nonetheless, company officials expect a positive response, and are encouraged by the fact that a team of DGA and French army observers will fly to Yuma, Arizona during the summer for a demonstration of the Shadow M2, which will not fly at Istres. Smaller also means cheaper, and Airbus says its offer – based on Textron Unmanned Systems’ upgraded Shadow M2 – would carry much lower acquisition and operating costs, and thus allow more intensive operations for a given budget, while its small size also facilitates transport and deployment. Shadow is operated by the US Army and Marine Corps and several foreign militaries, and over 300 air vehicles have logged over 1 million flight hours, including in combat. A competitive advantage that Airbus points out is that Shadow’s long service career, and different users, are such that the latest versions benefit from a wealth of technical and operational lessons learned. For Artemis, Airbus would modify the Shadow M2 air vehicle as little as possible to limit costs, but would replace its subsystems or adapt them to French requirements. These would include Airbus’ own Lygarion datalink, a modified ground station, and French sensor packages (radar and either electro-optical or signals intelligence) that are capable of simultaneous operation. Airbus plans to purchase full rights to the Shadow airframe and ground station, and so would control the entire system, ensuring “fully autonomous operations, as well as maximum growth potential, for the French customer,” according to a briefing document. It also says that a “significant” share of production and support – about 60% -- would take place in France, supporting French industry and jobs. In reality, a large share of production would remain in the United States, so French workshare would largely be made up by training and support, in addition to some key subsystems. -ends-

UAVs: France, Germany and Italy to Launch European MALE Program

PARIS --- Three European nations will sign an agreement at the Paris air show in June to jointly fund initial studies for a Medium Altitude Long Endurance (MALE) unmanned aerial vehicle, French Defense Minister Jean-Yves Le Drian said here March 11. France, Germany and Italy will follow up by awarding a study contract in December to an industry group formed by Airbus Defence and Space, Dassault Aviation and Alenia Aermacchi. The initial contract is valued at a few dozen millions of euros. Ultimately, if the program progresses as planned, the nations plan to obtain an operational reconnaissance UAV by 2025. “Our effort in the field of surveillance drones and ISR will increase with, already this year, the launch of studies of the future European drone, with Germany and Italy, that France envisions for about 2025, ,” Le Drian said here during a March 11 press conference. An Italian defense official confirmed the agreement, which has not yet been made public in Italy, however adding “we will see whether it ultimately leads to a development program.” The three companies have been calling for such a government initiative for over two years, and in May 2013 took the unusual step of issuing a joint statement calling on their governments to “launch a European MALE program.…to support the capability needs of European armed forces while optimizing the difficult budgetary situation through pooling of research and development funding.” The companies have a double goal: to maintain the know-how and expertise of their military aircraft design offices, now that they have mostly completed work on current fighters, and to recover the UAV business that is now going to their US competitors – France and Italy operate General Atomics Predator or Reaper UAVs, like the UK, the Netherlands has just decided to buy some while Spain is also weighing buying some. “Originally, [our] idea was to prevent the procurement of Reaper drones by European governments,” but this didn’t work, Dassault Aviation CEO Eric Trappier said here during a separate March 11 press conference. “We’ve been working on this project for a long time, and we think we can develop a drone to replace the Reaper, which is an interim solution. We have asked our governments to state that an operational requirement exists, and we will be able to reply to that requirement.” In parallel, France is however continuing to boost its Reaper force, which is seeing intensive use in Africa, where it is supporting French and allied troops operating in Mali. France is due to receive a third Reaper aircraft in April, and will order a follow-on batch of three additional aircraft in August, according to a planning document released by Le Drian. “We are asking for a contract from the three governments covering initial studies,” Trappier said. “Initially, it’s a question of a few dozen million euros, although it will cost more once development is launched.” The three companies set out the details of their proposal in a second joint statement issued in June 2014, in which they proposed “a Definition Phase which has been prepared by joint development teams of Airbus Defence and Space, Dassault Aviation and Alenia Aermacchi and which is backed by an industrial agreement on workshare and a cooperative agreement to start the MALE2020 program.” The broad lines of the industry proposal have been retained, although the initial operational capability has slipped to 2025. One of the trickier problems to be solved is the integration of the future MALE UAV into general air traffic, Trappier said. The inability to fly in unrestricted airspace is one of the reasons for which Germany canceled the EuroHawk program – a variant of Global Hawk fitted with a German sensor package – after spending several hundred million euros on its development. -ends-

An Introduction to Autonomy in Weapon Systems

Source: Center for New American Security Ref: no reference Issued Feb 13, 2015 23 PDF pages In this working paper, 20YY Warfare Initiative Director Paul Scharre and Adjunct Senior Fellow Michael Horowitz discuss future military systems incorporating greater autonomy. The intent of the paper is to help clarify, as a prerequisite to examining legal, moral, ethical and policy issues, what an autonomous weapon is, how autonomy is already used, and what might be different about increased autonomy in the future. (PDF format) Full text

UK: Challenges & Opportunities of Drone Security

Source: University of Birmingham Ref: No reference Issued Oct 22, 2014) 96 PDF pages Drone technology, both civil and military, under proper legal regulation, can continue to deliver 'significant benefits' for the UK's national security policy and economy in the coming decades. That is the conclusion of a new University of Birmingham Policy Commission Report which launches today. But the Government, and especially the Ministry of Defence (MoD), should do more to reach out to the public over what the Commission sees as the globally inevitable use of drones in armed conflict and in domestic surveillance. The Report finds that over the next 20 years, drones – or what the Commission and the RAF prefer to call Remotely Piloted Aircraft (RPA) – will become an integral part of Britain's aerospace capability, providing both advanced surveillance and precision weapons delivery. They can support UK forces deployed overseas, as in Afghanistan, or help prevent mass atrocities, as with the British Government's decision to deploy the RAF Reaper fleet against the Islamic State (ISIS). This decision was announced after the Report was completed but is entirely consistent with its conclusions. The Report examines the distinctive and unavoidable choices for the United Kingdom over a crucial emerging technology and sets out the under-appreciated distinction between legally constrained British practice and the US Government's cross-border counter-terrorism strikes which dominate and distort UK public debate. The Commission considers various moral arguments and concludes that the current and emerging generation of RPA pose no greater ethical challenges than those already involved in decisions to use any other type of UK military asset. The Report shows clearly that the UK has operated its armed Reapers in Afghanistan according to the same exceptionally strict Rules of Engagement (no weapon should be discharged unless there is 'zero expectation of civilian casualties') that it applies to manned aircraft. Key findings There are three main obstacles affecting the UK Government's use of drones that must be overcome: gaining public understanding and acceptance of the legal and ethical soundness of the practice; allaying fears over the potential development of LAWS; and safeguarding British airspace and the privacy of British citizens if drones are to be increasingly used for domestic surveillance and security. (PDF format) Report’s download page

UK, France to Launch FCAS Demo Phase

PARIS --- Four years after they first agreed to jointly develop an unmanned combat aircraft, France and Britain will finally launch the demonstration phase of the Future Combat Air System (FCAS) on July 15 at the Farnborough air show, the French defense ministry announced July 10. The two countries’ defense ministers will sign a Memorandum of Understanding (MoU) authorizing a 24-month, €150 million definition phase of the FCAS program, known as FCAS-Demonstration Phase, the French defense ministry announced July 10. Contracts will be awarded to industry in the autumn, and the project will officially begin in January 2015. Participating companies are Dassault Aviation and BAE Systems for airframe and systems integration; Thales and Selex ES (UK) for sensors and electronics; and Snecma and Rolls-Royce for engine and power systems. “There is agreement on a two-year concept phase…[and]….a contract could be awarded shortly,” UK Defence Procurement Minister Philip Dunne told reporters at the Eurosatory show here June 19, adding however that “data-sharing agreements have to be competed.” Physics and aerodynamics being what they are, it is not surprising that Dassault’s Neuron demonstrator (above) and BAE System’s Taranis demonstrator (below) should look the same at first glance. The FCAS will build on knowledge gained on both programs. (photos Dassault and BAE). BAE and Dassault have been working together for about 18 months to investigate the feasibility of joint development of FCAS, based on their separate but complementary experience in developing unmanned combat air vehicle (UCAV) demonstrators, either alone (BAE with its Taranis) or jointly – Dassault’s Neuron project also included Italy’s Alenia Aermacchi, Sweden’s Saab as well as smaller Greek and Spanish firms. A major question mark concerns the work-sharing arrangements, as both companies are obviously keen to advance and maintain their technological know-how. This is complicated, again, by their previous work on Taranis and Neuron, which sometimes led them in different directions and which may be difficult to reconcile. “We have already shared some data, but we haven’t shown everything yet,” Benoît Dussaugey, Dassault Executive Vice-President, International, told June 18, adding that full disclosure will not take place before contract award. However, having successfully managed Neuron on time and on schedule with an international team of partners, Dassault does not believe this aspect will be a show-stopper. "We are confident we will find an agreement with our partners on work-share, subject to sovereign decisions by governments," Dussaugey said. The program could be opened to additional foreign partners, he adds, on two conditions: "that everyone accepts and respects our common rules, and that the respective governments finance [their share] of the entire phase." Nonetheless, BAE’s surprise and high-profile unveiling of its Taranis UCAV demonstrator in January, which it had jealously kept under wraps until then, was clearly intended to show its credentials in the lead-up to the FCAS MoU. It is probable that, as in the previous phase, BAE will remain FCAS prime contractor, while France’s defense procurement agency, Direction Générale pour l’Armement (DGA), will act as program executive on behalf of both nations. Having successive definition and demonstration phases is considered essential for governments to define and harmonize their operational requirements, and for industry to weigh their technical feasibility and cost implications. For example, will in-flight refueling be required, and if yes using a receptacle or a boom? Where and how should radar antennas be integrated into the airframe? Will FCAS be designed to follow a pre-programmed flight path (which the French favor, as it is impervious to jamming, interception and loss of data-link), or on the contrary be remotely-piloted, as the Royal Air Force favors so as to keep a man permanently in the loop? Should the aircraft be totally silent in terms of radar, radio and IR emissions, or could it resort to jamming? Should it be single- or twin-engined? Once these basic questions are answered, processed and priced by industry, the logical follow-up would be a demonstration phase, during which the project would be further developed and prototypes or flight test aircraft built, but a decision would not be required before late 2017, which makes it very unlikely that a FCAS could fly before the end of the decade. -ends-

USAF Vision & Plans for UAVs 2013-2038

Source: US Air Force Ref: no reference Issued April 04, 2014) 101 PDF pages Air Force leaders outlined what the next 25 years for remotely piloted aircraft will look like in the RPA Vector, published April 4. “The RPA Vector is the Air Force’s vision for the next 25 years for remotely-piloted aircraft,” said Col. Kenneth Callahan, the RPA capabilities division director. “It shows the current state of the program, the great advances of where we have been and the vision of where we are going.” The goal for the vector on the operational side is to continue the legacy Airmen created in the RPA field. The vector is also designed to expand upon leaps in technology and changes the Airmen have made through the early years of the program. “The Airmen have made it all about supporting the men and women on the ground,” Callahan said. “I couldn’t be more proud of them for their own advances in technology to expand the program, making it a top platform.” The document gives private corporations an outlook on the capabilities the Air Force wants to have in the future, ranging from creation of new RPAs to possibilities of automated refueling systems. “There is so much more that can be done with RPAs,” said Col. Sean Harrington, an intelligence, surveillance, and reconnaissance command and control requirements chief. “Their roles (RPAs) within the Air Force are evolving. We have been able to modify RPAs as a plug-and-play capability while looking to expand those opportunities.” In recent years, RPAs not only supported the warfighter on the ground, they also played a vital role in humanitarian missions around the world. They provided real time imagery and video after the earthquake that led to a tsunami in Japan in 2011 and the earthquake in Haiti in 2010, according to Callahan. Then, most recently, during the California Rim Fire in August 2013, more than 160,000 acres of land were destroyed. Though this loss was significant, it was substantially decreased by the support of the California Air National Guard’s 163rd Reconnaissance Wing, with support from an MQ-1 Predator, a remotely piloted aircraft. With this vector, technologies may be created to improve those capabilities while supporting different humanitarian efforts, allowing the Air Force to support natural disaster events more effectively and timely. The future of the Air Force’s RPA programs will be continuously evolving, to allow the Air Force to be the leader in Air, Space, and Cyberspace. “We already combine our air, space and cyber forces to maximize these enduring contributions, but the way we execute must continually evolve as we strive to increase our asymmetric advantage,” said Gen. Mark Welsh, the Air Force chief of staff. “Our Airmen's ability to rethink the battle while incorporating new technologies will improve the varied ways our Air Force accomplishes its missions.” (PDF format) Full text

Airbus Plots Return to UAV Market

MADRID --- Airbus Defense and Space is preparing to return to the UAV market, three years after it was forced out by the reluctance of the French and German governments to financially support any of the unmanned aircraft projects which it had developed. “We are revisiting our strategy on unmanned aerial vehicles with a vision to leadership,” Antonio Rodríguez Barberán, Head of Military Aircraft sales at Airbus Defence and Space, told “We are planning to be there, even if it takes some years.” This is a major shift in company policy, as Airbus Group decided in 2011 to freeze its UAV activities after having invested over 500 million euros in several programs without having convinced its domestic customers that they were worth supporting. Corporate strategy, at the time, was to sit out until European governments decided which programs, and which companies, they would support. This approach was not very successful, however, as Airbus was frozen out of two major market segments: Medium Altitude Long Endurance (MALE), where France preferred buying Reaper unmanned aircraft from the United States, with Germany and the Netherlands to follow shortly, and the High Altitude Lone Endurance (HALE) segment, where its EuroHawk program was abruptly cancelled by the Germen government because of cost and regulatory failings. The company was left with only smaller UAVs, a segment where competition is rife and margins small. Airbus has now changed tack because “it’s time for a proper aircraft manufacturer to get involved, to certify UAVs to civilian standards – and I mean FAR 23 and FAR 25 – so they can be used in unsegregated airspace,” Rodriguez said. At present, UAVs can only be used in segregated airspace, under military air regulations, and so are severely limited in their operational usefulness. While it has no immediate plans to resume large-scale investments in the UAV sector, Airbus DS does not see financing as a major obstacle. “We know there is a market, and if there is a market there is money,” Rodriguez said. He adds that for Airbus this is a decade-long project, which will eventually bring it a leading role: “Airbus is not here to be a subcontractor,” he says, making clear that the company is not aiming for a subordinate role in ongoing European UAV programs. While waiting for the MALE market to mature, and for the dust to settle in the combat UAV (UCAV) segment, Airbus is finalizing development of its own tactical UAV, Atlante, which is significantly smaller than the MALE and HALE segments it previously pursued. Weighing about 550 kg, Atlante has been developed in Spain, and from the outset the goal has been to fly in segregated civilian airspace, i.e. over populated areas, and it is intended to be certified for that operational environment. “The key word here is ‘certification’,” Rodriguez says, adding that, of course, “it has to offer value for money.” Atlante first flew in February 2013, Light Transport Aircraft Sector Gliding Along While its UAV strategy matures, Airbus DS continues to improve its transport aircraft product line. It recently agreed with Indonesian partner IPT Nurtanio, also known as Indonesian Aerospace, to develop a modernized version of the C-212 light twin turboprop transport, and it also is refining the performance of the C-295, its very successful medium twin. Most of the effort is on refining the airframe design, for example by adding wingtip extensions, and on increasing engine power ratings, which together add 1,000 ft. to the aircraft’s ceiling in One Engine Inoperative (OEI) conditions. The C295’s Pratt & Whitney engines are already at their power limit, so they have no more growth potential, so these refinements, together with a major upgrade of the aircraft’s avionics, will suffice to keep them competitive for years to come, says Rodriguez. The avionics upgrade will make it easier for the aircraft to operate in a civil environment. A new design may well be necessary in 10 or 15 years, he adds, but for now it is still very premature. The current line-up is quite profitable for the company, and currently accounts for average sales of about 20 aircraft per year, worth about 700-800 million euros including 100-150 million euros for related services. Over the past 10 years, Airbus has sold 157 of the 306 light/medium turboprops sold world-wide, and so has a market share of over 50%, and this should increase as additional orders will be announced this year, one of them “by Easter.” Compared to the Alenia C-27J Spartan, its direct competitor, the C-295 is simple, offers substantially lower fuel costs and “can be maintained with a hammer and a screwdriver,” Rodriguez says. Specifically, he says that maintenance costs are 35% lower, fuel consumption is 50% lower and, in terms of life-cycle costs, “it can save one million euros per plane, per year.” -ends-

US Unmanned Vehicle Roadmap, FY2013-38

Source: U.S Department of Defense Ref: 14-S-0553 Issued December 26, 2013 168 PDF pages Strategy and budget realities are two aspects of the Defense Department's new Unmanned Systems Integrated Roadmap, released Dec. 23. The report to Congress is an attempt to chart how unmanned systems fit into the defense of the nation. "The 2013 Unmanned Systems Integrated Roadmap articulates a vision and strategy for the continued development, production, test, training, operation and sustainment of unmanned systems technology across DOD," said Dyke Weatherington, the director of the unmanned warfare and intelligence, surveillance and reconnaissance office at the Pentagon. "This road map establishes a technological vision for the next 25 years and outlines the actions and technologies for DOD and industry to pursue intelligently, and affordably align with this vision," he continued. Unmanned aerial vehicles have received the most press, but unmanned underwater vehicles and ground vehicles are also providing warfighters with incredible capabilities. Although unmanned vehicles have proved their worth in combat operations throughout the Middle East and Central Asia, current technologies must be expanded and integrated into the sinews of the defense establishment, the report says. It also calls for unmanned systems to be programs of record in order to achieve "the levels of effectiveness, efficiency, affordability, commonality, interoperability, integration and other key parameters needed to meet future operational requirements." (PDF format) Full text

Was Watchkeeper Grounded for 3 Months?

PARIS --- The service introduction of Watchkeeper, the tactical UAV that has been in development for the British Army since 2005, may be further delayed due to unidentified technical issues that appear to have grounded the aircraft for three months in late 2013. The Watchkeeper program apparently logged no flight activity between mid-September and mid-January, according to data provided by Thales, the program’s main contractor, which showed that the number of total flight hours and total sorties barely changed between Sept. 16, 2013 and Jan 12, 2014. As of Sept. 16, Watchkeeper had flown “almost 600 sorties, for a total of about 1,000 flight hours,” a Thales spokesperson told in an e-mail follow-up to an interview at the DSEi show in London. On Jan. 20, responding to a follow-up query, the Thales spokesperson said that “Tests are progressing nominally, as planned. We have now passed 600 sorties and are nearing 1,000 flight hours.” These figures show no flight activity between mid-September and mid-January. Asked to explain this apparent discrepancy, the Thales spokesperson had not responded by our deadline, three days later. “The delivery of Watchkeeper equipment is on track and trials are continuing with over 550 hours flying having been completed,” the UK Ministry of Defence in a Jan 31 e-mail statement. Note this is about half the flight hour figure provided by Thales. “…the Release to Service process is taking longer than expected,” the MoD statement continued, adding that “The last flight was last week, so it’s incorrect to say that the assets are still grounded.” This unannounced grounding may be one reason why the French Ministry of Defense is back-pedaling on earlier promises to consider buying the Watchkeeper, after an inconclusive evaluation between April and July 2013 by the French army. The evaluation included “several dozen flight hours” from Istres, the French air force’s flight test center in south-eastern France, a French MoD spokesman said Jan. 31. The evaluation report has not been completed, and no date has been set, he added. The final communiqué of today’s Anglo-French summit meeting, for the first time since November 2010, makes no mention of the Watchkeeper, although it was mentioned in passing by French President François Hollande during the summit press conference. Thales’ figures on Watchkeeper flight activities have also been provided to other news outlets. A Jan. 16 article by FlightGlobal quotes Nick Miller, Thales UK’s business director for ISTAR and UAV systems, as saying that “Watchkeeper aircraft have now completed more than 600 flights, exceeding a combined 950 flight hours.” Aviation Week had posted an article the previous day, Jan. 15, in which it reported that “Thales U.K….is continuing flight trials and supports army training(Emphasis added—Ed.). However, it is difficult to understand how training can take place without an increase in the number of sorties and flight hours. The above article says “Watchkeeper may début in spring,” echoing a similar story published Sept. 12, 2013 in which Aviation Week said Thales UK “is hopeful that …Watchkeeper…will be certified by the end of the year.” This did not happen. This same Aviation Week Sept. 12 story said that the Watchkeeper “fleet has flown more than 1,000 hr. over 600 flights” – a higher figure than FlightGlobal reported on Jan. 16, four months later. The discrepancies in the figures provided to at least three trade publications clearly contradict company statements that Watchkeeper flight operations are “nominal” and “are continuing,” as they show no flight activity has been logged since September. The obvious conclusion is that flight activities have been curtailed, either by a technical grounding or because of administrative blockages. In either case, Watchkeeper – which is already over three years late -- has clearly hit new obstacles that will further delay its operational clearance by the UK Ministry of Defence’s new Military Aviation Authority (MAA). Watchkeeper is being developed by UAV Tactical Systems (U-TacS), a joint venture between Israel’s Elbit Systems (51% share) and Thales UK, the British unit of France’s Thales, under a contract awarded in 2005. UAV Engines Ltd, which builds Watchkeeper’s engine in the UK, is a wholly-owned subsidiary of Elbit Systems. Originally valued at £700 million, the cost has escalated to over £850 million, and service introduction has been delayed by at least three years. The British Army is due to receive a total of 54 Watchkeeper unmanned aircraft and 15 ground stations. By late 2013, 26 aircraft and 14 ground stations had been delivered, according to published reports. -ends-

France, UK to Launch Anti-ship Missile, UAV Projects

PARIS --- France and Britain are due to sign several defense-related agreements during their short Jan. 31 summit meeting at Brize Norton, England, including one to launch joint development of a next-generation anti-ship missile and another to fund a two-year feasibility study for a joint combat UAV. British and French officials have widely briefed the media in advance of the summit to obtain the editorial coverage that both countries’ leaders – British Prime Minister David Cameron and French President François Hollande – need to bolster their domestic standing. The briefings also seek to highlight that, after several fruitless summits in the past three years, the two countries are finally making progress on the joint defense projects to which they subscribed in the 2010 Lancaster House treaty. The two countries are expected to launch the long-delayed development of a lightweight helicopter-launched anti-ship guided missile known as FASGW(H) in the UK and ANL (Anti-Navires Léger) in France. Originally due to be launched in 2011, this program is now expected to be funded under a €500 million (or £500 million – accounts differ) contract to be awarded to MBDA, a joint subsidiary of BAE Systems, Airbus Defense & Space and Italy’s Finmeccanica. The Financial Times reported Jan 29 that the cost would be shared evenly, but that Britain will provide initial funding because it needs the missile earlier. It is not expected that the summit will launch other missile projects also long in the pipeline, such as the joint upgrade of the Scalp/Storm Shadow cruise missile and a joint technology roadmap for short range air defence technologies. UCAV feasibility study The second major decision that could be announced Jan. 31, sources say, is the launch of a two-year feasibility study for a joint Unmanned Combat Air Vehicle (UCAV), with a contract to be awarded jointly to BAE Systems and Dassault Aviation, which last year completed a 15-month risk reduction study. This project has barely inched forward since 2010, when it was first mooted, but Rolls-Royce and Safran have agreed to cooperate on the aircraft’s engines, and Thales and Selex ES on its electronics, Defense News reported Jan. 28, such is the eagerness to launch a funded program before design know-how evaporates. The two governments must also decide whether, and at what stage, to open this project to other European partners, such as Italy’s Alenia Aermacchi, Sweden’s Saab and the Airbus Group (formerly EADS), which have developed or are studying their own aircraft but lack government funding. Little concrete progress is expected at the summit, however, on other unmanned aircraft projects under discussion. One is France’s possible buy of the Watchkeeper tactical drone, developed for the British Army by Thales UK, and which is running several years late. Although France has said several times that it was interested in buying it and allow “cooperation on technical, support, operational and development of doctrine and concepts,” it seems that its operational evaluation by the French Army’s 61st Artillery Regiment was not conclusively positive. Another project is the long-running saga of a European medium-altitude, long-endurance (MALE) UAV intended to ultimately replace the US-supplied Predator UAVs currently operated by both countries, as well as Italy, and soon to be bought by Germany and the Netherlands. To date, this project has received little in the way of government funding, and it is this lack of serious money, combined with the lack of clear military requirements, that industry says is curtailing its ability to address Europe’s UAV needs. Minehunters and armored vehicles The two countries are also expected to launch the joint development of an autonomous underwater vehicle to replace the remote-controlled robots used by their navies’ minehunters. Finally, France may announce it will loan about 20 VBCI wheeled combat vehicles to the British Army, which currently lacks a vehicle of this kind, the Paris daily “Les Echos” reported Jan. 27. This is intended to allow the British, who are said to have been impressed by the VBCI’s performance in Afghanistan and Mali, to evaluate it before they begin procurement of similar heavy wheeled armored vehicles in 2017. -ends-