For the first time ever, an unmanned aerial vehicle (X-47B) has operated from an aircraft carrier (USS Theodore Roosevelt) at the same time as a manned combat aircraft (F-18 Hornet). The test is intended to perfect deck operations and maneuvering alongside manned aircraft in the flight pattern. (USN photo)

Breaking News

see all items

Press Releases

see all items

17/09/2014

Orbital Delivers First UAV Engine to Insitu

PERTH, Australia --- Orbital Corporation Limited (Orbital) has delivered the first purpose-built ScanEagle Unmanned Aerial Vehicle (UAV) propulsion system to Insitu Inc., a subsidiary of The Boeing Company, for in-house testing and development. Designed specifically for Small Unmanned Aircraft Systems (SUAS) class UAVs, it is the first reciprocating internal combustion propulsion system to be engineered from the ground up for unmanned aerospace application. "Delivery of this first engine is a major milestone in the UAV propulsion engineering project," said Mr. Terry Stinson, Orbital's CEO and Managing Director. "Insitu is very satisfied with the program results to date, and the team is already moving forward to achieve our next target." "Insitu is extremely pleased with the receipt of this first propulsion system and our collaboration with Orbital Corporation in Australia," said Mr. Ryan Hartman, Insitu's President and CEO. "We conducted a rigorous selection process for our next generation propulsion supply partner, and this event further proves that we made the right choice." Orbital has been working with Insitu division of Boeing since January 2013 as part of an initial design, development and validation contract to supply UAV propulsion systems. Delivery of the first propulsion system will now allow a rigorous bench testing program to commence which will be followed by flight testing. Successful completion of the program is expected to lead to a low volume production contract to be supplied from Orbital's facilities in Perth, and may evolve into a higher volume production business from new Orbital production facilities, which would need to be established in the United States. The delivered propulsion system was designed and manufactured by Orbital and incorporates Orbital's new Argon Engine Control Unit (ECU) and control system. The Argon ECU has advancements not available on other aircraft in this class, including real-time monitoring and diagnostics of all critical systems, sensor and actuator redundancy, and extensive 'black box' recording capability. The system also uses Orbital's patented and unique FLEXDI technology, which enables the highest level of performance for heavy fuel SUAS engine applications, significantly extending the range for the aircraft in flight. Insitu and Orbital have also combined technical capabilities to achieve benchmark low vibration and noise suppression. "The new propulsion system has features that are intended to drive a step change in performance and reliability in the SUAS propulsion market," stated Mr. Stinson. As the SUAS and Medium Altitude Long Endurance (MALE) UAV markets continue to move to heavy fuel, working with Insitu ensures Orbital is well positioned to take the lead in UAV propulsion systems. The global SUAS market alone is projected to reach $1.9B by 2020 according to the recent MarketsandMarket's report, with increasing civil and military applications as the driving factors in this market. Sales of the overall UAV market are expected to double within the next five years. Insitu is currently the biggest in the SUAS market segment. "Orbital has adopted an aggressive diversification and growth strategy," said Mr. Stinson. "Building on continuing success with Insitu, this new UAV propulsion initiative has the potential to evolve into a $100 million per annum revenue business for Orbital." Orbital is an international developer of innovative technical solutions for a cleaner world. Orbital's principal operations in Perth, Western Australia, provide a world class facility with capabilities in design, manufacturing, development and testing of engines and engine management systems. -ends-
16/09/2014

Northrop Wins $354M for Three Additional Global Hawk UAVs

SAN DIEGO --- The U.S. Air Force has awarded Northrop Grumman Corporation (NOC) a $354 million primarily firm-fixed-price contract to expand their RQ-4 Global Hawk unmanned aircraft system (UAS) fleet by three aircraft. Global Hawk operates multiple sensors simultaneously to gather intelligence, surveillance and reconnaissance (ISR) data. The new aircraft are Multi-INT models that carry sophisticated imaging and electronic signals sensors capable of collecting multiple types of intelligence from high altitudes for up to 32 hours. The contract also includes retrofit kits to add Airborne Signals Intelligence Payload (ASIP) sensors into two of the existing RQ-4, providing them with Multi-INT capability. ASIP is an advanced ISR collection sensor also built by Northrop Grumman. The aircraft will bring the Air Force RQ-4 fleet size to 37 in 2017. The ASIP retrofit kits are scheduled for delivery in late 2016 and in 2017. All RQ-4 UAS fuselages are built at Northrop Grumman facilities in Moss Point, Mississippi, with final assembly and acceptance testing is conducted in Palmdale. "Northrop Grumman is proud that the RQ-4 Global Hawk has become an indispensable ISR resource for the Air Force. These new systems will provide further opportunities to keep our warfighters safe," said Mick Jaggers, Global Hawk program manager, Northrop Grumman. "Even as Global Hawk flight hours increase each year, we are striving to reduce the overall operating cost of the system for the Air Force," Jaggers added. "The Air Force's commitment to putting more Global Hawks in the air and our dedication to meeting affordability agreements for production and sustainment ensure that this vital asset will remain sustainable and viable for many years." The different variants of Global Hawk have flown more than 126,000 flight hours supporting diverse global missions. Carrying a variety of ISR sensor and communications gateway payloads, Global Hawk supports antiterrorism, antipiracy, humanitarian assistance, disaster relief, airborne communications relay, information-sharing and the full range of operational combat missions. Northrop Grumman is a leading global security company providing innovative systems, products and solutions in unmanned systems, cyber, C4ISR, and logistics and modernization to government and commercial customers worldwide. -ends-
16/09/2014

Boeing May Assist Danish UAV Project

ODENSE, Denmark --- Boeing and Danish company Sky-Watch today signed an agreement that will enable Boeing to explore assisting the company in its development of a new type of unmanned aerial vehicle (UAV) under a project supported by the Danish National Advanced Technology Foundation. The goal of the “Smart UAV” project is to develop a new generation of vertical take-off and landing (VTOL) UAVs that will combine the advantages of existing rotorcraft UAVs with those of fixed-wing aircraft for longer range and endurance. Sky-Watch and the Technical University of Denmark’s National Space Institute and Department of Environmental Engineering are collaborating on the project, and Boeing will explore ways to assist Sky-Watch in the effort. Boeing and Sky-Watch signed the agreement today at an event at UAS Denmark, the unmanned aerial systems industry group based at the Hans Christian Andersen Airport in Odense. Boeing joined the group in 2013 and learned about fellow member Sky-Watch through UAS Denmark. “Today’s agreement is evidence that Danish companies like Sky-Watch are leading innovation that can attract the attention of global companies; that organizations like UAS Denmark are helping make valuable industry connections; and that a company like Boeing is well served by taking a diverse look at Danish industry in creating collaborations and technologies for the future,” said Susan Colegrove, Boeing’s director of International Strategic Partnerships for Europe. To achieve the goals of the “Smart UAV” project, Sky-Watch will contribute expertise from development of its HUGINN X1 quad-rotor UAV and from Sky-Watch Labs, the company’s research and development department. Boeing will contribute expertise in VTOL and fixed-wing technologies from its research and development organizations, as well as from Insitu, a Boeing subsidiary that is an industry leader in unmanned aerial system solutions. Such aircraft could be used for a wide range of missions, including environmental monitoring and geo-data research, in addition to maritime surveillance in Arctic regions. Boeing and Insitu have significant experience in both manned and unmanned maritime surveillance platforms to contribute to the project. “The Smart UAV project is an important step forward in establishing Denmark as a leader in unmanned technology development, and we are excited to have Boeing join Sky-Watch in this effort,” said Michael Messerschmidt, Sky-Watch’s manager of Business Development. “Boeing’s experience in developing and implementing global unmanned systems will be an invaluable addition to the work Sky-Watch has started with the Technical University of Denmark.” Founded in 2009 and located in Støvring in northern Denmark, Sky-Watch develops, produces and sells advanced UAV systems with state-of-the-art control technology. The company also provides contract-based research and development for the global defense and aerospace industry. Because of its UAV experience and HUGINN X1 quad-rotor vehicle, Sky-Watch received a grant from the Danish National Advanced Technology Foundation in December of 2013 to pursue the Smart UAV project with the Technical University of Denmark. A unit of The Boeing Company, Boeing Defense, Space & Security is one of the world's largest defense, space and security businesses specializing in innovative and capabilities-driven customer solutions, and the world’s largest and most versatile manufacturer of military aircraft. Headquartered in St. Louis, Boeing Defense, Space & Security is a $33 billion business with 56,000 employees worldwide. -ends-
15/09/2014

QF-16 Target Drone Passes Final Ops Test

TYNDALL AIR FORCE BASE, Fla. --- The Air Force's newest aerial target took a major step toward preparing warfighters downrange with a realistic fourth-generation replication of what they may face on the battlefield. The first unmanned QF-16 Viper struck down over the Gulf of Mexico Sept. 5, 2014, was part of a joint effort between the Test and Training Division at Eglin Air Force Base, Florida, and the 82nd Aerial Target Squadron here. "This test was the culmination of years of planning and aircrew training specifically tailored to stand up the next generation of full-scale aerial targets," said Lt. Col. Ryan Inman, the 82nd ATRS commander. "The teamwork between members of Boeing, the systems program office at Eglin (AFB), the 53rd Weapons Evaluation Group and the 82nd ATRS enabled a nearly flawless test." Currently, QF-4 Phantoms are used as targets to test pilots, aircraft and weapons before they reach the battlefield. The unmanned QF-16 performed an auto-takeoff from Tyndall AFB and was targeted by air-to-air missiles launched over the gulf test range. This successful final operational test validated the QF-16's capability to assess the end game performance of weapons employed against it, and closes out the development phase of the program, according to an official at Eglin AFB's testing division. "The aging fleet of the QF-4s and their limited capabilities against modern fighters have rendered the aerial target workhorse, Phantom II, at its technological limit," Inman said. "The QF-16 initiates the next chapter in advanced aerial targets, predominately in support of more technologically superior air-to-air weapons test and evaluation programs. The QF-16 will enable our leaner and more efficient Air Force to continue operations at maximum mission effectiveness while maintaining air superiority and global reach for decades to come." This test was an important step in the right direction for the program and marked the conclusion of operational and range qualification testing at both the Eglin Test Range and White Sands Missile Range. "The successful mission is a direct result of the hard work, commitment and synergy between Air Combat Command, the Test and Training Division, the Aerospace Maintenance and Regeneration Group, the Boeing Company and numerous other stakeholders,” said Michele Hafers, the Test and Training Division director. “This test and training asset was born to fly and has flown its final mission validating our pilots and our weapons can maintain air dominance across the globe." The 82nd ATRS is part of the 53rd Weapons Evaluation Group, 53rd Wing at Eglin AFB. The group provides the personnel and infrastructure to test and evaluate weapons utilized by the combat air forces of the U.S. and its allies. It operates the only full-scale aerial targets in the Defense Department. In accordance with U.S. law, Title 10, Section 2366 of the U.S. Code, a missile system must undergo lethality testing before it can enter full-scale production. The 82 ATRS maintains DOD’s sole capability to execute the Title 10 requirement. There are sub-scale target capabilities in other services, but the Air Force is the only service that has a full-acale aerial target program, Inman said. "Team Target executes that capability flawlessly every day at Tyndall and Holloman AFB," Inman said. "This test could not have been accomplished without the unparalleled support of the operations and mission support groups. From the fire and explosive ordnance disposal support, to the airfield management and tower and radar approach control support, to the logistical support, there are countless unrecognized cogs behind the successful mission. We are merely the execution agency that gets to sit at the end of the droneway and bask in the achievement." -ends-
12/09/2014

Triton UAV Prepares for Cross-Country Flight

This week, for the first time, we will fly our unmanned MQ-4C Triton cross-country to Naval Air Station Patuxent River, where the “future of naval aviation begins.” For months, our team, comprised of military, civilian and contractor personnel, has been doing a phenomenal job making sure every detail is in place for this historic day. As a program manager, it is an extraordinary opportunity to see the team’s hard work come to fruition. Last year, I had the privilege of watching Triton’s first flight. Since then, I’ve observed tremendous success with our initial envelope expansion flight tests and now I’m anticipating its landing here shortly. For me, my connection to this team and program goes well beyond my three years as program manager. In January 2006, I was serving as the final commodore at Wing FIVE in Brunswick, Maine. During that time, Wing FIVE executed the first-ever operational deployment of the Navy’s Global Hawk Maritime Demonstration Unmanned Aircraft System, now known as BAMS-Demonstrator (BAMS-D). While providing critical information to warfare commanders, BAMS-D also provided critical lessons learned for a future unmanned platform, then named BAMS. At the time, I didn’t anticipate the stake I’d have in the program someday. Now, finally five years later, here I am getting ready for the arrival of that ‘future system’, now formally named Triton. I will be eagerly waiting the MQ-4C take off from Northrop Grumman’s California facility. As it makes its way across the country, flying high at altitudes in excess of 50,000 feet while passing through the southern U.S. border, the Gulf of Mexico, across Florida and up the Atlantic Coast and Chesapeake Bay, we will monitor and control the flight from our Navy System Integration Lab here in Pax River. In the early hours of the morning, our team will watch it land on the runway and taxi into its new hangar for the first time. Triton’s arrival to Pax River marks more than a key milestone on the path to initial operational capability; it represents the tireless work and dedication of a collection of individuals with a common goal in mind: critical capability development and delivery to the warfighter. Teamed with its manned-capability counterpart, the P-8A, Triton will be a key component of the Navy’s family of systems to achieve maritime domain awareness. We are bringing the future here. This ferry flight marks the start of testing that will ready this system for the fleet in the next few years. The work being done by our team here is far from trivial. Each one of our team members should reflect on the hard work that has gone into this effort and realize what they are contributing to our future warfighter. As always, it’s an honor to be part of this phenomenal team. -ends-
11/09/2014

Italian Predator Flies Sortie in Gulf of Aden

On Tuesday 4 September the 32nd wing of the Italian Air Force, which operates the remote controlled aircraft known as Predator, completed their first tasking with the EU Naval Force. The Italian Predator team, which is based in Djibouti, carried out a successful 11 hour check test flight and was able to highlight its effectiveness in carrying out long-range surveillance and reconnaissance patrols. In the coming months the remote controlled aircraft will be used to monitor the seas off the coast of Somalia where pirates have been known to operate and give an early warning of a possible attack. As is the case with EU Naval Force warships and Maritime Patrol and Reconnaissance Aircraft, the remote controlled aircraft can also be used to monitor the safety of World Food Programme vessels as they transit the Indian Ocean. -ends-
11/09/2014

GA Wins $41M for New Reaper Requirements

General Atomics - Aeronautical Systems Inc., Poway, California, has been awarded a $40,906,190 cost-plus-fixed-fee order (0033) on contract FA8620-10-G-3038 for development of requirements description documents for the MQ-9 Reaper Block 1 Unmanned Aerial System (UAS) and the MQ-9 Reaper Block 5 UAS with the 904.6.0 system/software release. Work will be performed in Poway, California, with an expected completion date of Sept. 8, 2017. This contract was a sole-source acquisition. Fiscal year 2012 aircraft procurement funds in the amount of $40,906,190 are being obligated at the time of award. The Air Force Life Cycle Management Center, Wright-Patterson Air Force Base, Ohio, is the contracting activity. -ends-
11/09/2014

USAF Details UAV Squadron Operations

KANDAHAR AIRFIELD, Afghanistan --- Little more than a decade ago, the skies over Afghanistan looked dramatically different than they do today. Heavy bombing from B-52 Stratofortress', B-1B Lancers and B-2 Spirit bombers could be seen along with F-16 Fighting Falcons, as well as the Navy's F-18 Hornet. Today a small reconnaissance squadron from Kandahar Airfield accounts for more than eight out of 10 of the RPA combat air patrols and reconnaissance missions over Afghan skies. The 62nd Expeditionary Reconnaissance Squadron mission is to provide world-class, full spectrum remotely piloted aircraft operations for the joint forces in Afghanistan. According to squadron leaders, the unit's Airmen work 24 hours a day to provide 84 percent of U.S. Central Commands' RPA combat air patrols. "Here at Kandahar, we support the mission by providing 600 daily hours of intelligence, surveillance and reconnaissance for the Combined Forces Air Component and troops on the ground," said 1st Lt. Michael, an RPA pilot with the 62nd ERS. "If at any point the troops on the ground need eyes in the sky to back them up and keep over watch, we will deliver that." The squadron is responsible for launching and recovering all of the Air Force's MQ-1 Predator and MQ-9 Reaper combat sorties in Afghanistan that operate from Kandahar and Jalabad. After crew members from the 62 ERS here launch the aircraft, they work with members in the U.S. to link with the RPA's to take over the flying for several hours. While the RPA's are primarily used as intelligence-collection assets, they also provide strike capabilities for local joint commanders here. "We work to prosecute nearby targets as well," said 1st Lt. Michael, an RPA pilot with the squadron. "We protect the friendly convoys that go on local missions." The unit enables more than 200,000 hours a year of armed ISR full motion video, airborne surveillance and close air support to combatant commanders. They make 55 percent of the worldwide RPA combat air patrols. As the 62 ERS works around-the-clock, crew members ensure they are ready to respond at a moment's notice. "We spend every second on our shift ensuring the aircraft are ready to go," said 1st Lt. Michael, a 62nd ERS RPA pilot. "We ensure the weapons on the aircraft are safe and that communication links work. This will allow the crews back in the states to accomplish their mission. Once the aircraft lands safely, we ensure the next ones are ready to go." The Airmen are accountable for operating RPA assets worth more than $800 million. With the responsibility comes a sense of pride to support operations in Afghanistan. As many units in Afghanistan are concluding missions, the 62nd ERS Airmen continue to ensure their mission is accomplished day in and day out. "I haven't had a day off in over 90 days, but it feels pretty good to part of the mission here," said Tech. Sgt. Steve, a sensor operator with the 62nd ERS. "We support the operations and people that are in contact with the bad guys every day. It is great knowing we are protecting the guys on the ground." -ends-
11/09/2014

‘Common’ Software for Next-Gen UCLASS

PATUXENT RIVER, Md. --- NAVAIR engineers recently installed new software for the Navy’s Unmanned Carrier-Launched Airborne Surveillance and Strike (UCLASS) system’s control station at the program’s Naval Air Station Patuxent River lab. In early September, the UCLASS team integrated the latest iteration of Common Control System (CCS) software into the next-generation unmanned effort, laying the groundwork for potential use across multiple domains –airborne, land and subsurface. “One of the premises that started CCS was not rebuilding the software that we needed for every UAS every time,” said Jeff Davis, CCS team lead. “We focused on using existing products that we have within the Navy inventory to provide that first baseline going forward for the next UAS, in this case UCLASS. As a result, this allows development investment to focus on the future — the new capabilities that you can bring to the fleet.” This new software version is the first to provide an unmanned command and control capability using the latest Navy Interoperability Profile (NIOP) standards. The NIOPs allow control systems to talk to and share data with multiple air vehicles, Davis said. His team leveraged support from other unmanned programs, specifically Triton and Fire Scout, to build baseline software for UCLASS. They are currently testing this software with an air vehicle simulator based on Triton. “This iteration forms the baseline for all future UCLASS control software,” said Cmdr. Wade Harris, Control System and Connectivity (CS&C) lead for UCLASS. “These early lab tests will help inform us as we move forward with development and eventually test with the air vehicle.” As the lead systems integrator, the Navy is spearheading the CS&C and carrier segments, while working with industry to lead the design and development the air system segment. “One of the unique aspects of the UCLASS program is that we have to pull all of the different segments together,” said Ron La France, UCLASS integration lead. “We have the control station and connectivity segment, carrier segment, along with the air system segment. All three of those have to be integrated and tested at the system level and that is what we will do here in this lab.” These government-led segments require a high-level of coordination. The UCLASS program team is working with 72 programs of record, 22 program offices, six program executive offices and three systems commands, he said. UCLASS will be the first-ever, forward-deployed, carrier-based unmanned air system designed to provide persistent intelligence, surveillance, reconnaissance and targeting with precision-strike capability. An early operational capability is anticipated in the 2020-2021 timeframe. -ends-
09/09/2014

Canada Orders More iRobot Packbots

BEDFORD, Mass. --- iRobot Corp. (IRBT), a leader in delivering robotic technology-based solutions, has been awarded multi-year contracts with an initial value of $9.6 million by the Canadian Department of National Defence (DND). The contracts, awarded after a competitive bidding process, call for the delivery of 20 iRobot 510 PackBot CBRN Recce Systems, training and future product lifecycle support. All systems under the contract are expected to be delivered by April 2015. The iRobot 510 PackBot CBRN Recce System is a modular expansion to the company's 510 PackBot Multi-Mission robot platform that meets specific requirements set forth by the Canadian Department of National Defence. The iRobot 510 PackBot CBRN Recce System is a modular expansion to the company's 510 PackBot Multi-Mission robot platform that meets specific requirements set forth by the Canadian DND. It includes a CBRN suite that integrates five primary sensors to reliably detect, alert and report on chemical warfare agents, toxic industrial chemicals, volatile gases, explosives and radiation. The robot also features enhanced mobility through the addition of rear flippers. It was chosen due in part to its ease of use, superior mobility, ability to access confined spaces and broad sensing capabilities. "iRobot is honored to be working with the Canadian DND to meet the challenge of keeping personnel safe when responding to CBRN threats," said Frank Wilson, senior vice president and general manager of iRobot's Defense & Security business unit. "CBRN events occur globally, and each present their own unique challenges. iRobot offers all of our customers rugged, reliable and expandable systems that are capable of addressing a wide range of specific mission needs." While the 510 PackBot CBRN Recce System meets specific Canadian DND requirements, the base 510 PackBot Multi-Mission platform is able to integrate additional sensors to assist with the identification and interrogation of CBRN threats. The robot is also ideal for missions including explosive ordnance disposal, reconnaissance, route clearance and data collection in industrial settings. iRobot has delivered more than 5,000 robots to military and civil defense forces worldwide, keeping personnel safe by allowing them to conduct dangerous missions from safe standoff distances. -ends-

Analysis and Background

see all items

11/07/2014

UK, France to Launch FCAS Demo Phase

PARIS --- Four years after they first agreed to jointly develop an unmanned combat aircraft, France and Britain will finally launch the demonstration phase of the Future Combat Air System (FCAS) on July 15 at the Farnborough air show, the French defense ministry announced July 10. The two countries’ defense ministers will sign a Memorandum of Understanding (MoU) authorizing a 24-month, €150 million definition phase of the FCAS program, known as FCAS-Demonstration Phase, the French defense ministry announced July 10. Contracts will be awarded to industry in the autumn, and the project will officially begin in January 2015. Participating companies are Dassault Aviation and BAE Systems for airframe and systems integration; Thales and Selex ES (UK) for sensors and electronics; and Snecma and Rolls-Royce for engine and power systems. “There is agreement on a two-year concept phase…[and]….a contract could be awarded shortly,” UK Defence Procurement Minister Philip Dunne told reporters at the Eurosatory show here June 19, adding however that “data-sharing agreements have to be competed.” Physics and aerodynamics being what they are, it is not surprising that Dassault’s Neuron demonstrator (above) and BAE System’s Taranis demonstrator (below) should look the same at first glance. The FCAS will build on knowledge gained on both programs. (photos Dassault and BAE). BAE and Dassault have been working together for about 18 months to investigate the feasibility of joint development of FCAS, based on their separate but complementary experience in developing unmanned combat air vehicle (UCAV) demonstrators, either alone (BAE with its Taranis) or jointly – Dassault’s Neuron project also included Italy’s Alenia Aermacchi, Sweden’s Saab as well as smaller Greek and Spanish firms. A major question mark concerns the work-sharing arrangements, as both companies are obviously keen to advance and maintain their technological know-how. This is complicated, again, by their previous work on Taranis and Neuron, which sometimes led them in different directions and which may be difficult to reconcile. “We have already shared some data, but we haven’t shown everything yet,” Benoît Dussaugey, Dassault Executive Vice-President, International, told Defense-Aerospace.com June 18, adding that full disclosure will not take place before contract award. However, having successfully managed Neuron on time and on schedule with an international team of partners, Dassault does not believe this aspect will be a show-stopper. "We are confident we will find an agreement with our partners on work-share, subject to sovereign decisions by governments," Dussaugey said. The program could be opened to additional foreign partners, he adds, on two conditions: "that everyone accepts and respects our common rules, and that the respective governments finance [their share] of the entire phase." Nonetheless, BAE’s surprise and high-profile unveiling of its Taranis UCAV demonstrator in January, which it had jealously kept under wraps until then, was clearly intended to show its credentials in the lead-up to the FCAS MoU. It is probable that, as in the previous phase, BAE will remain FCAS prime contractor, while France’s defense procurement agency, Direction Générale pour l’Armement (DGA), will act as program executive on behalf of both nations. Having successive definition and demonstration phases is considered essential for governments to define and harmonize their operational requirements, and for industry to weigh their technical feasibility and cost implications. For example, will in-flight refueling be required, and if yes using a receptacle or a boom? Where and how should radar antennas be integrated into the airframe? Will FCAS be designed to follow a pre-programmed flight path (which the French favor, as it is impervious to jamming, interception and loss of data-link), or on the contrary be remotely-piloted, as the Royal Air Force favors so as to keep a man permanently in the loop? Should the aircraft be totally silent in terms of radar, radio and IR emissions, or could it resort to jamming? Should it be single- or twin-engined? Once these basic questions are answered, processed and priced by industry, the logical follow-up would be a demonstration phase, during which the project would be further developed and prototypes or flight test aircraft built, but a decision would not be required before late 2017, which makes it very unlikely that a FCAS could fly before the end of the decade. -ends-
30/04/2014

USAF Vision & Plans for UAVs 2013-2038

Source: US Air Force Ref: no reference Issued April 04, 2014) 101 PDF pages Air Force leaders outlined what the next 25 years for remotely piloted aircraft will look like in the RPA Vector, published April 4. “The RPA Vector is the Air Force’s vision for the next 25 years for remotely-piloted aircraft,” said Col. Kenneth Callahan, the RPA capabilities division director. “It shows the current state of the program, the great advances of where we have been and the vision of where we are going.” The goal for the vector on the operational side is to continue the legacy Airmen created in the RPA field. The vector is also designed to expand upon leaps in technology and changes the Airmen have made through the early years of the program. “The Airmen have made it all about supporting the men and women on the ground,” Callahan said. “I couldn’t be more proud of them for their own advances in technology to expand the program, making it a top platform.” The document gives private corporations an outlook on the capabilities the Air Force wants to have in the future, ranging from creation of new RPAs to possibilities of automated refueling systems. “There is so much more that can be done with RPAs,” said Col. Sean Harrington, an intelligence, surveillance, and reconnaissance command and control requirements chief. “Their roles (RPAs) within the Air Force are evolving. We have been able to modify RPAs as a plug-and-play capability while looking to expand those opportunities.” In recent years, RPAs not only supported the warfighter on the ground, they also played a vital role in humanitarian missions around the world. They provided real time imagery and video after the earthquake that led to a tsunami in Japan in 2011 and the earthquake in Haiti in 2010, according to Callahan. Then, most recently, during the California Rim Fire in August 2013, more than 160,000 acres of land were destroyed. Though this loss was significant, it was substantially decreased by the support of the California Air National Guard’s 163rd Reconnaissance Wing, with support from an MQ-1 Predator, a remotely piloted aircraft. With this vector, technologies may be created to improve those capabilities while supporting different humanitarian efforts, allowing the Air Force to support natural disaster events more effectively and timely. The future of the Air Force’s RPA programs will be continuously evolving, to allow the Air Force to be the leader in Air, Space, and Cyberspace. “We already combine our air, space and cyber forces to maximize these enduring contributions, but the way we execute must continually evolve as we strive to increase our asymmetric advantage,” said Gen. Mark Welsh, the Air Force chief of staff. “Our Airmen's ability to rethink the battle while incorporating new technologies will improve the varied ways our Air Force accomplishes its missions.” (PDF format) Full text
07/03/2014

Airbus Plots Return to UAV Market

MADRID --- Airbus Defense and Space is preparing to return to the UAV market, three years after it was forced out by the reluctance of the French and German governments to financially support any of the unmanned aircraft projects which it had developed. “We are revisiting our strategy on unmanned aerial vehicles with a vision to leadership,” Antonio Rodríguez Barberán, Head of Military Aircraft sales at Airbus Defence and Space, told Defense-Aerospace.com. “We are planning to be there, even if it takes some years.” This is a major shift in company policy, as Airbus Group decided in 2011 to freeze its UAV activities after having invested over 500 million euros in several programs without having convinced its domestic customers that they were worth supporting. Corporate strategy, at the time, was to sit out until European governments decided which programs, and which companies, they would support. This approach was not very successful, however, as Airbus was frozen out of two major market segments: Medium Altitude Long Endurance (MALE), where France preferred buying Reaper unmanned aircraft from the United States, with Germany and the Netherlands to follow shortly, and the High Altitude Lone Endurance (HALE) segment, where its EuroHawk program was abruptly cancelled by the Germen government because of cost and regulatory failings. The company was left with only smaller UAVs, a segment where competition is rife and margins small. Airbus has now changed tack because “it’s time for a proper aircraft manufacturer to get involved, to certify UAVs to civilian standards – and I mean FAR 23 and FAR 25 – so they can be used in unsegregated airspace,” Rodriguez said. At present, UAVs can only be used in segregated airspace, under military air regulations, and so are severely limited in their operational usefulness. While it has no immediate plans to resume large-scale investments in the UAV sector, Airbus DS does not see financing as a major obstacle. “We know there is a market, and if there is a market there is money,” Rodriguez said. He adds that for Airbus this is a decade-long project, which will eventually bring it a leading role: “Airbus is not here to be a subcontractor,” he says, making clear that the company is not aiming for a subordinate role in ongoing European UAV programs. While waiting for the MALE market to mature, and for the dust to settle in the combat UAV (UCAV) segment, Airbus is finalizing development of its own tactical UAV, Atlante, which is significantly smaller than the MALE and HALE segments it previously pursued. Weighing about 550 kg, Atlante has been developed in Spain, and from the outset the goal has been to fly in segregated civilian airspace, i.e. over populated areas, and it is intended to be certified for that operational environment. “The key word here is ‘certification’,” Rodriguez says, adding that, of course, “it has to offer value for money.” Atlante first flew in February 2013, Light Transport Aircraft Sector Gliding Along While its UAV strategy matures, Airbus DS continues to improve its transport aircraft product line. It recently agreed with Indonesian partner IPT Nurtanio, also known as Indonesian Aerospace, to develop a modernized version of the C-212 light twin turboprop transport, and it also is refining the performance of the C-295, its very successful medium twin. Most of the effort is on refining the airframe design, for example by adding wingtip extensions, and on increasing engine power ratings, which together add 1,000 ft. to the aircraft’s ceiling in One Engine Inoperative (OEI) conditions. The C295’s Pratt & Whitney engines are already at their power limit, so they have no more growth potential, so these refinements, together with a major upgrade of the aircraft’s avionics, will suffice to keep them competitive for years to come, says Rodriguez. The avionics upgrade will make it easier for the aircraft to operate in a civil environment. A new design may well be necessary in 10 or 15 years, he adds, but for now it is still very premature. The current line-up is quite profitable for the company, and currently accounts for average sales of about 20 aircraft per year, worth about 700-800 million euros including 100-150 million euros for related services. Over the past 10 years, Airbus has sold 157 of the 306 light/medium turboprops sold world-wide, and so has a market share of over 50%, and this should increase as additional orders will be announced this year, one of them “by Easter.” Compared to the Alenia C-27J Spartan, its direct competitor, the C-295 is simple, offers substantially lower fuel costs and “can be maintained with a hammer and a screwdriver,” Rodriguez says. Specifically, he says that maintenance costs are 35% lower, fuel consumption is 50% lower and, in terms of life-cycle costs, “it can save one million euros per plane, per year.” -ends-
03/03/2014

US Unmanned Vehicle Roadmap, FY2013-38

Source: U.S Department of Defense Ref: 14-S-0553 Issued December 26, 2013 168 PDF pages Strategy and budget realities are two aspects of the Defense Department's new Unmanned Systems Integrated Roadmap, released Dec. 23. The report to Congress is an attempt to chart how unmanned systems fit into the defense of the nation. "The 2013 Unmanned Systems Integrated Roadmap articulates a vision and strategy for the continued development, production, test, training, operation and sustainment of unmanned systems technology across DOD," said Dyke Weatherington, the director of the unmanned warfare and intelligence, surveillance and reconnaissance office at the Pentagon. "This road map establishes a technological vision for the next 25 years and outlines the actions and technologies for DOD and industry to pursue intelligently, and affordably align with this vision," he continued. Unmanned aerial vehicles have received the most press, but unmanned underwater vehicles and ground vehicles are also providing warfighters with incredible capabilities. Although unmanned vehicles have proved their worth in combat operations throughout the Middle East and Central Asia, current technologies must be expanded and integrated into the sinews of the defense establishment, the report says. It also calls for unmanned systems to be programs of record in order to achieve "the levels of effectiveness, efficiency, affordability, commonality, interoperability, integration and other key parameters needed to meet future operational requirements." (PDF format) Full text
31/01/2014

Was Watchkeeper Grounded for 3 Months?

PARIS --- The service introduction of Watchkeeper, the tactical UAV that has been in development for the British Army since 2005, may be further delayed due to unidentified technical issues that appear to have grounded the aircraft for three months in late 2013. The Watchkeeper program apparently logged no flight activity between mid-September and mid-January, according to data provided by Thales, the program’s main contractor, which showed that the number of total flight hours and total sorties barely changed between Sept. 16, 2013 and Jan 12, 2014. As of Sept. 16, Watchkeeper had flown “almost 600 sorties, for a total of about 1,000 flight hours,” a Thales spokesperson told Defense-Aerospace.com in an e-mail follow-up to an interview at the DSEi show in London. On Jan. 20, responding to a follow-up query, the Thales spokesperson said that “Tests are progressing nominally, as planned. We have now passed 600 sorties and are nearing 1,000 flight hours.” These figures show no flight activity between mid-September and mid-January. Asked to explain this apparent discrepancy, the Thales spokesperson had not responded by our deadline, three days later. “The delivery of Watchkeeper equipment is on track and trials are continuing with over 550 hours flying having been completed,” the UK Ministry of Defence in a Jan 31 e-mail statement. Note this is about half the flight hour figure provided by Thales. “…the Release to Service process is taking longer than expected,” the MoD statement continued, adding that “The last flight was last week, so it’s incorrect to say that the assets are still grounded.” This unannounced grounding may be one reason why the French Ministry of Defense is back-pedaling on earlier promises to consider buying the Watchkeeper, after an inconclusive evaluation between April and July 2013 by the French army. The evaluation included “several dozen flight hours” from Istres, the French air force’s flight test center in south-eastern France, a French MoD spokesman said Jan. 31. The evaluation report has not been completed, and no date has been set, he added. The final communiqué of today’s Anglo-French summit meeting, for the first time since November 2010, makes no mention of the Watchkeeper, although it was mentioned in passing by French President François Hollande during the summit press conference. Thales’ figures on Watchkeeper flight activities have also been provided to other news outlets. A Jan. 16 article by FlightGlobal quotes Nick Miller, Thales UK’s business director for ISTAR and UAV systems, as saying that “Watchkeeper aircraft have now completed more than 600 flights, exceeding a combined 950 flight hours.” Aviation Week had posted an article the previous day, Jan. 15, in which it reported that “Thales U.K….is continuing flight trials and supports army training(Emphasis added—Ed.). However, it is difficult to understand how training can take place without an increase in the number of sorties and flight hours. The above article says “Watchkeeper may début in spring,” echoing a similar story published Sept. 12, 2013 in which Aviation Week said Thales UK “is hopeful that …Watchkeeper…will be certified by the end of the year.” This did not happen. This same Aviation Week Sept. 12 story said that the Watchkeeper “fleet has flown more than 1,000 hr. over 600 flights” – a higher figure than FlightGlobal reported on Jan. 16, four months later. The discrepancies in the figures provided to at least three trade publications clearly contradict company statements that Watchkeeper flight operations are “nominal” and “are continuing,” as they show no flight activity has been logged since September. The obvious conclusion is that flight activities have been curtailed, either by a technical grounding or because of administrative blockages. In either case, Watchkeeper – which is already over three years late -- has clearly hit new obstacles that will further delay its operational clearance by the UK Ministry of Defence’s new Military Aviation Authority (MAA). Watchkeeper is being developed by UAV Tactical Systems (U-TacS), a joint venture between Israel’s Elbit Systems (51% share) and Thales UK, the British unit of France’s Thales, under a contract awarded in 2005. UAV Engines Ltd, which builds Watchkeeper’s engine in the UK, is a wholly-owned subsidiary of Elbit Systems. Originally valued at £700 million, the cost has escalated to over £850 million, and service introduction has been delayed by at least three years. The British Army is due to receive a total of 54 Watchkeeper unmanned aircraft and 15 ground stations. By late 2013, 26 aircraft and 14 ground stations had been delivered, according to published reports. -ends-
30/01/2014

France, UK to Launch Anti-ship Missile, UAV Projects

PARIS --- France and Britain are due to sign several defense-related agreements during their short Jan. 31 summit meeting at Brize Norton, England, including one to launch joint development of a next-generation anti-ship missile and another to fund a two-year feasibility study for a joint combat UAV. British and French officials have widely briefed the media in advance of the summit to obtain the editorial coverage that both countries’ leaders – British Prime Minister David Cameron and French President François Hollande – need to bolster their domestic standing. The briefings also seek to highlight that, after several fruitless summits in the past three years, the two countries are finally making progress on the joint defense projects to which they subscribed in the 2010 Lancaster House treaty. The two countries are expected to launch the long-delayed development of a lightweight helicopter-launched anti-ship guided missile known as FASGW(H) in the UK and ANL (Anti-Navires Léger) in France. Originally due to be launched in 2011, this program is now expected to be funded under a €500 million (or £500 million – accounts differ) contract to be awarded to MBDA, a joint subsidiary of BAE Systems, Airbus Defense & Space and Italy’s Finmeccanica. The Financial Times reported Jan 29 that the cost would be shared evenly, but that Britain will provide initial funding because it needs the missile earlier. It is not expected that the summit will launch other missile projects also long in the pipeline, such as the joint upgrade of the Scalp/Storm Shadow cruise missile and a joint technology roadmap for short range air defence technologies. UCAV feasibility study The second major decision that could be announced Jan. 31, sources say, is the launch of a two-year feasibility study for a joint Unmanned Combat Air Vehicle (UCAV), with a contract to be awarded jointly to BAE Systems and Dassault Aviation, which last year completed a 15-month risk reduction study. This project has barely inched forward since 2010, when it was first mooted, but Rolls-Royce and Safran have agreed to cooperate on the aircraft’s engines, and Thales and Selex ES on its electronics, Defense News reported Jan. 28, such is the eagerness to launch a funded program before design know-how evaporates. The two governments must also decide whether, and at what stage, to open this project to other European partners, such as Italy’s Alenia Aermacchi, Sweden’s Saab and the Airbus Group (formerly EADS), which have developed or are studying their own aircraft but lack government funding. Little concrete progress is expected at the summit, however, on other unmanned aircraft projects under discussion. One is France’s possible buy of the Watchkeeper tactical drone, developed for the British Army by Thales UK, and which is running several years late. Although France has said several times that it was interested in buying it and allow “cooperation on technical, support, operational and development of doctrine and concepts,” it seems that its operational evaluation by the French Army’s 61st Artillery Regiment was not conclusively positive. Another project is the long-running saga of a European medium-altitude, long-endurance (MALE) UAV intended to ultimately replace the US-supplied Predator UAVs currently operated by both countries, as well as Italy, and soon to be bought by Germany and the Netherlands. To date, this project has received little in the way of government funding, and it is this lack of serious money, combined with the lack of clear military requirements, that industry says is curtailing its ability to address Europe’s UAV needs. Minehunters and armored vehicles The two countries are also expected to launch the joint development of an autonomous underwater vehicle to replace the remote-controlled robots used by their navies’ minehunters. Finally, France may announce it will loan about 20 VBCI wheeled combat vehicles to the British Army, which currently lacks a vehicle of this kind, the Paris daily “Les Echos” reported Jan. 27. This is intended to allow the British, who are said to have been impressed by the VBCI’s performance in Afghanistan and Mali, to evaluate it before they begin procurement of similar heavy wheeled armored vehicles in 2017. -ends-
27/01/2014

US Navy’s Mabus on Unmanned Naval Ops

This past summer, Chief of Naval Operations Jonathan Greenert and I stood on the flight deck of the aircraft carrier George H.W. Bush, at sea off the coast of Virginia. We watched as the X-47B unmanned aircraft, a sixty-two foot wingspan demonstrator, made its first arrested landing onboard an aircraft carrier. It was a historic moment for naval aviation. Every Naval Aviator knows landing on an aircraft carrier is about the most difficult thing you can do as a pilot. Recovering the X-47B safely aboard the ship, with the autonomous system landing independent of its human operators, was a vital step toward our future vision of a Carrier Air Wing. In less than a decade, this future air wing will be made up of today’s F/A-18 Super Hornet strike fighters, MH-60 Seahawk helicopters, and advanced future platforms like the F-35C Lightning II Joint Strike Fighter and our next generation unmanned carrier aircraft. The U.S. Navy and Marine Corps are America’s “Away Team.” We provide presence. We are where it counts when it counts, not just at the right time but all the time. We give the President and Combatant Commanders the flexibility they need to respond to any challenge. The platforms we buy to make up our fleet are an important part of our future. Unmanned systems are vital to our ability to be present; they lessen the risk to our Sailors and Marines and allow us to conduct missions that are longer, go farther, and take us beyond the physical limits of pilots and crews. Launching and recovering unmanned aircraft as large and capable as our manned fighters from the rolling decks of aircraft carriers is just one element of the future of maritime presence and naval warfare. Helos Leading the Way While we are designing and testing our fixed wing unmanned aircraft, some of our helicopter squadrons have been operating unmanned systems – both in combat and maritime security operations – for years. The MQ-8B Fire Scout is our current unmanned helicopter system. It has been conducting missions including patrolling against illicit trafficking in the Pacific, counter-piracy operations in the Indian Ocean, and combat operations in Afghanistan and Libya. Since the Fire Scout’s first deployments in 2009 our ships, helicopter squadrons, and Marine Corps units have been working together to refine and expand how we use the platform. The next generation Fire Scout, the MQ-8C with its greater payload and longer range, made its first flight last year. It will deploy in support of our Littoral Combat Ships and Special Operations units. In the past year, we have stood up our first two Fire Scout squadrons in San Diego to train and organize the operators and maintainers who will work on these aircraft. Meanwhile the Marines continue to experiment and operate with the Cargo Resupply Unmanned Aerial System (CRUAS) which carries cargo to patrol bases and forward operating bases in combat areas such as Afghanistan, eliminating the need for dangerous convoys and potentially saving lives. Under, On & Over the Sea The future of unmanned systems in the Navy and Marine Corps is focused on incorporating our people on manned platforms with unmanned systems to create an integrated force. A good example of this integration is the Mine Countermeasures Mission Module we are testing for the Littoral Combat Ship. This module includes a small remotely controlled submarine which tows a mine-hunting sonar to detect the mines, paired with a manned Seahawk helicopter which neutralizes the mines once they are found. The development team is also working with unmanned surface and air systems for autonomous mine sweeping, shallow water mine interdiction, and beach mine clearance. Nobody can argue with the idea that when clearing mines we should keep our Sailors out of the mine fields and let our unmanned systems take those risks. Last spring we had the first test flight of the MQ-4 Triton unmanned maritime patrol aircraft, and earlier this month it passed the half-way point in its flight testing. Its 131-foot wingspan – 30 feet wider than the manned P-3C Orion maritime patrol planes we have flown for decades – makes it today’s largest unmanned platform. Triton’s long, slender wings allow it to stay in the air with its sensors for a day at time, providing persistent maritime coverage to the warfighter. Combined with the aircrews and operators aboard our new P-8 Poseidon manned maritime patrol aircraft, Triton will identify and track targets as necessary, ensuring that the fleet has a complete picture of what is happening at sea. The Future Airwing The X-47B is the culmination of an experimental program to prove that unmanned systems can launch and recover from the aircraft carrier. The program that follows this demonstrator will radically change the way presence and combat power is delivered as an integral part of the future carrier air wing. Known by the acronym UCLASS, for Unmanned Carrier Launched Airborne Surveillance and Strike system, it will conduct its missions over very long periods of time and at extreme distances while contributing to a wide variety of missions. It will make the carrier strike group more lethal, effective, and survivable. The end state is an autonomous aircraft capable of precision strike in a contested environment, and it is expected to grow and expand its missions so that it is capable of extended range intelligence, surveillance and reconnaissance, electronic warfare, tanking, and maritime domain awareness. It will be a warfighting machine that complements and enhances the capabilities already resident in our carrier strike groups. Operating these platforms independently of a pilot, and with growing autonomy, greatly increases the possibilities for what we can do with them in the future. Unmanned carrier aircraft don’t require flights to maintain pilot proficiency; the operators can maintain their skills in the simulator. The planes will be employed only for operational missions, saving fuel costs and extending the service life of the aircraft. They also create the opportunity to advance new ways to use our aircraft, like developing new concepts for swarm tactics. We are finalizing the requirements that will lead to a design for the UCLASS. We aren’t building them yet. We want to ensure we get the requirements and design set right before we start production in order to avoid the mistakes and cost overruns which have plagued some past programs. Meanwhile our other unmanned systems like the Fire Scout and Triton continue their success. The Future of Naval Operations Across the entire spectrum of military operations, an integrated force of manned and unmanned platforms is the future. The X-47B’s arrested landing aboard USS GEORGE H.W. BUSH showed that the Navy and Marine Corps are riding the bow wave of technological advances to create this 21st century force. But it is our Sailors and Marines that will provide the innovative thinking and develop the new ideas that are crucial to our success. The unmanned systems and platforms we are developing today, and our integrated manned and unmanned employment methods, will become a central part of the Navy and Marine Corps of tomorrow. They will help ensure we continue to be the most powerful expeditionary fighting force the world has ever known. About the author: Ray Mabus is the 75th Secretary of the Navy, leading the U.S. Navy and Marine Corps. He has served as Governor of the State of Mississippi, Ambassador to the Kingdom of Saudi Arabia, and as a surface warfare officer aboard USS Little Rock (CLG-4). -ends-
12/11/2013

A Short History of US Air Force Drone Operations

LAS VEGAS, Nev. --- The RPA actually got its start as early as 1896, when something called aerodromes at the time, were used to test the capabilities of new flying devices and to test if it was even possible for a heavier-than-air craft to achieve sustained flight. In May 1896, Dr. Samuel Langley proved that mechanical flight was possible with his Aerodrome No. 5. From that point on, the shape, design and technology structure of the unmanned aircraft evolved over the years, improving each time. In 1918, the U.S. Army became interested in unmanned flight and ordered 25 Liberty Eagle aircraft. The intent was for the aircraft to be used as an aerial torpedo. Just over two decades later in 1941, the OQ-2 Radioplane became the first mass-produced unmanned aerial vehicle. By 1945, only a few years later, radioplane factories had produced around 15,000 aircraft for use as target drones. Since achieving the first sustained controlled flight, the idea of unmanned flight has grown to be one of the most useful aircraft technology systems in modern history. Today, RPAs have transformed from a basic tool into high-tech machines, providing assistance during both humanitarian and war time situations. 1990s - 2000: In January 1994, more than half a century after the advent of the first mass-produced UAV, the Air Force's modern-day remotely piloted aircraft program was born. General Atomics Aeronautical Systems, Inc. received an advanced concept technology demonstration contract to produce a medium altitude endurance "unmanned" aerial vehicle. This new system would be called the RQ-1 Predator and would be based off its precursor the GNAT 750, which initially debuted in 1989 and was used for long-endurance tactical surveillance. A mere six months after the contract was established, the new aircraft achieved its first flight in July 1994. While the flight was a success, the Air Force then had to bring in military pilots, navigator-trained rated officers and non-rated officers to learn to use the new technology. "I was the first person to receive a permanent change of station and the ninth person to actually enter into the program," said Lt. Col. Eric, 432nd Wing Director of Staff. "I came in short notice in November of 1995 from Cannon Air Force Base, N.M. In May 1996 I went to ground school in San Diego at the General Atomics headquarters. Afterward, I went to flight training at Fort Huachuca, Ariz., where the Army had the only system in the states at the time." John Box, a retired Air Force pilot, trained to become an RPA pilot in June 1996. He said because the system wasn't produced by the Air Force, the new equipment did not come with technical orders, making the task of learning how to use the system rather challenging. "Much of what we learned was by word of mouth from our instructors and not delivered in a military format," he said. "That took an adjustment and I found it frustrating and challenging but very exciting. I often had to deal with emergency situations that no one had ever before encountered. Every time I flew the system, I learned something new. We were developing books and adding new information to them daily. I wasn't trained for this type of work. Others may have got us started off on a better foot, but I believed in the concept and was committed to making it happen as best I could. It was a 'cowboy' atmosphere and I really enjoyed it." By 1995 it was decided that the Predator's capabilities were needed to aid U.N. and NATO efforts in Europe. The Predator and Air Force personnel were deployed to Taszar, Hungary, to provide support from 1995 until August 1998. Eric deployed to Hungary in August 1996 after completing training. It was during this deployment that he felt the continued challenges of integrating a new form of air power into the Air Force's inventory. "There were two Air Force pilots and a General Atomics instructor pilot with us ... only the three of us to accomplish the mission," he said. "There were no publications, technical orders, regulations or guidance that we hadn't created ourselves. We had to rewrite the very first technical orders that we were given and put them into Air Force terminology." Eric said maintainers were also dealing with some of the same issues as the pilots - learning by observation. "The General Atomics technician was there saying 'here's how we do the 50-hour engine inspection,' and our guys were watching him do it," he said. "But there were no publications or technical orders to break down the process of actually doing it. It took almost three years before we actually started getting valid technical orders on the systems, and it was the same the guidance and everything else. Today we are used to having regulations outlining how people do their jobs and laying down boundaries--we didn't have those." In October 1996 Eric found himself testing new waters for the Predator while facing the challenges of learning new technology and not having Air Force publications or technical orders to break down the processes. "On Oct. 1, 1996, during my deployment, I got the dubious distinction of being the first person in the military to be investigated for a safety investigation board for crashing a remotely piloted airplane," he said "At the time I was doing everything I could to save the airplane. That was my first and foremost concern, but because we didn't have any resources to help us, we kind of made it up as we went. We actually had a General Atomics engineer in the ground control station with us. We said, 'what if we try this?' and he would reply, 'well I don't know we've never tested that before.' We just didn't have any other choices so we were doing it the best that we could." In the end it was determined the crash occurred because the engine had been incorrectly rebuilt. Although the incident resulted in the loss of an aircraft, Eric said it was a learning experience. "We didn't have any publications to follow and we lost an airplane because of it," he said. "But, we learned a lot from it ... we were pioneers on the leading edge of this system making Air Force leaders understand what kind of capabilities this thing had, what we could do with it, and how to move forward with it." It was during this time when Eric and John were learning to fly the Predator that James Clark, at the time an Air Force colonel assigned to the Pentagon, was chosen by Gen. Ronald Fogleman, Chief of Staff, U.S. Air Force, to examine Predator operations. Clark, who is known as "Snake" by many, was chosen because he had no experience with RPAs. Fogleman wanted someone with an outsider's perspective. "What I found [during my study] was remarkable," he said. "This little drone could fly hundreds of miles away and provide color television and infrared video surveillance of enemy activity, without risking the life of a pilot. In a control van, which was a converted NASCAR transporter trailer, I watched pilots and sensor operations sitting in front of computer screens actually flying this thing - simply remarkable." While Snake was studying Predator operations in D.C., and pilots, mechanics and other RPA community members were providing assistance in deployed locations, Creech Air Force Base, Nev., was continuing to be built up in order to become home to the Air Force's premier RPA wing. The 11th Reconnaissance Squadron was the first squadron to stand up at Creech AFB. This milestone also marked the point when the Air Force RPA program's dynamic objectives took on a new strategic focus. After the squadron stood up the 11th RS deployed members to support Detachment 3, which was under Defense Advanced Research Projects Agency. "While deployed we were Detachment 3 under DARPA," Eric said. "When the Air Force took over we became the 11th Reconnaissance Squadron deployed; then once the Air Force turned to the expeditionary concept, [the squadron] became the 11th Expeditionary Reconnaissance Squadron. I was actually the first formal commander of the 11th ERS when it stood up. While the 11th ERS was deployed and redefining itself as a combat asset, Indian Springs Air Force Auxiliary Field was continuing to grow back home in preparation to become the home of additional RPA squadrons. "Indian Springs was a pretty bare base then," John said. "Most of the existing infrastructure was dilapidated, early Cold War era construction. They converted the small Base Exchange into our Intel vault and they renovated a small building across the street for our squadron operations facility. We ate at a small chow hall that originally supported up-range and transient aircraft operations. There was a recreation center/gym converted from several other old buildings 'kluged' together." Mardi Wilcox, who was the squadron maintenance officer in 1995, took her new task head on despite having few resources available at the time. "I was super excited to be selected as the first maintenance officer in the Air Force to be assigned to a UAV unit," she said. "It was cutting edge technology and the UAVs we had at the time were special in that way. No one else had them, and a lot of people had never heard of them. We were excited because there was no limit to what they could do ... we could only dream about what was to come. We had one double-wide trailer and one small hangar. Shelters for the UAVs were canvas structures across the ramp. It was 10 tons of stuff in a 1 ton bag." During the late 1990s the program was still in its beginning phases. For some this was exciting but to others it seemed less than promising. However, Wilcox said she had a much different outlook on the subject. "There were a lot of naysayers [at the time]," she said. "Many thought it was just another 'thing' that would just go away ... but our major command leadership made it work. I think for the most part my people loved it. It was new, it was on the leading edge and for the majority of my folks, we wanted it to work. We set the foundation for what the program is today." 2000 - Present: After Operation Allied Force wrapped up in mid-1999, the Air Force was left to figure out what to do with this still relatively new technology. By early 2000 the RQ-1 Predator, which had just proved its capabilities overseas, was armed and became known as the MQ-1 Predator. "As part of the 'lessons learned' from Operation Allied Force, it was determined that if the Predator had a weapon on it, we could cut the time between identifying a target and then destroying it," Snake said. "On Feb. 16, 2000, Predator 3034 took its first successful Hellfire shot from the air, and to all of our surprise, it worked." This new capability arrived just in time, as events on the morning of Sept. 11, 2001, changed many lives and the helped define the future of the Predator. "We watched the attack on the World Trade Center, until we were shocked by flight 77 as it crashed into the Pentagon," Snake said. "Late on the evening of Sept. 12, a lone C-17 took off from an airfield on the west coast with its cargo of Predators and Hellfire missiles. Days later, one of America's first responses to the terrorist attacks on 9/11 was in place and ready for combat." After 9/11 the MQ-1 Predator proved itself resilient and capable during operations Enduring Freedom and Iraqi Freedom. The success of RPAs during these operations resulted in an increased desire for RPA capabilities in future operations. Lt. Col. Russell, who was the RPA assignments officer at Air Force Personnel Center in 2005, remembers trained RPA pilots were a constant need for the Air Force. At the time, there were general officers everywhere who wanted every training spot filled in order to support U.S. and partner nation troops overseas. Pilots, maintainers and intelligence Airmen were pulled from several different platforms from across the Air Force to meet the demand RPA community's growing demands. In 2007, the 432nd Wing was activated at Creech AFB as the Air Force's first wing comprised entirely of RPAs, which was a sign of the program's rapid growth. A year later the demand for RPAs had grown so significantly that the wing expanded and became dual-hatted as the 432nd Wing/432nd Air Expeditionary Wing, capable of offering full-spectrum support to overseas operations while still supporting the 432nd Wing's operate, train and equip efforts. "In 2011, I came out to Creech and was qualified as a MQ-9 pilot," Russell said. "Having been a part of the assignment process in the past, it's good to see how the tribe has grown. The Air Force is very tribal; I used to be an F-15 pilot, so I used to be part of that 'tribe'. Now it's neat to see the growth of an RPA tribe, made up of people from all different backgrounds." As Russell arrived at Creech in 2011, the MQ-1 and its successor, the MQ-9 Reaper reached 1 million total flight hours - just 16 years after the program initially began. Just over two years later, on Oct. 22, 2013, the Air Force's MQ-1 and MQ-9 RPAs doubled that by achieving 2 million cumulative flight hours. Today, the MQ-1 and MQ-9 continue to be flown from 8,000 miles away in Afghanistan in support of Operation Enduring Freedom, patrolling the skies and providing critical support and protection to U.S. and coalition forces on the ground. It is because of the dedication and diligence of the men and women past and present that the RPA community has gotten where it is today. As a testament to the vital role of the RPA community during the past 18 years, Predator 3034, the first RPA to test the Hellfire, and the first to shoot in combat on Oct. 7, 2001, is now displayed at the Smithsonian National Air and Space Museum in Washington, D.C. -ends-
27/09/2013

GAO Faults UCLASS Acquisition Plan

In fiscal year 2014, the Navy plans to commit to investing an estimated $3.7 billion to develop, build, and field from 6 to 24 aircraft as an initial increment of Unmanned Carrier-Launched Airborne Surveillance and Strike (UCLASS) capability. However, it is not planning to hold a Milestone B review--a key decision that formally initiates a system development program and triggers key oversight mechanisms--until after the initial UCLASS capability has been developed and fielded in fiscal year 2020. The Navy views UCLASS as a technology development program, although it encompasses activities commensurate with system development, including system integration and demonstration. Because the initial UCLASS system is to be developed, produced, and fielded before a Milestone B decision, Congress's ability to oversee the program and hold it accountable for meeting cost, schedule, and performance goals will likely be limited. Specifically, the program will operate outside the basic oversight framework provided by mechanisms like a formal cost and schedule baseline, statutory unit cost tracking, and regular reports to Congress on cost, schedule, and performance progress. The Navy believes its approach effectively utilizes the flexibility in the Department of Defense's (DOD) acquisition policy to gain knowledge needed to ensure a successful UCLASS system development program starting in fiscal year 2020. Yet the Navy expects to review preliminary designs, conduct a full and open competition, and award a contract for UCLASS development in fiscal year 2014, a point at which DOD policy and best practices indicate that a program would be expected to hold a Milestone B review to initiate a system development program. Apart from deferring Milestone B, the Navy's plan would be consistent with the knowledge-based acquisition process reflected in DOD policy. UCLASS faces several programmatic risks going forward. First, the UCLASS cost estimate of $3.7 billion exceeds the level of funding that the Navy expects to budget for the system through fiscal year 2020. Second, the Navy has scheduled 8 months between the time it issues its request for air vehicle design proposals and the time it awards the air vehicle contract, a process that DOD officials note typically takes 12 months to complete. Third, the UCLASS system is heavily reliant on the successful development and delivery of other systems and software, which creates additional schedule risk. Fourth, the Navy will be challenged to effectively manage and act as the lead integrator for three separate but interrelated segments--air vehicle, carrier, and control system--and 22 other government systems, such as the aircraft landing system, the timing and alignment of which are crucial to achieving the desired UCLASS capability. While the Navy recognizes many of these risks and has mitigation plans in place, they could lead to cost increases and schedule delays if not effectively addressed. The Navy's UCLASS acquisition strategy includes some good acquisition practices that reflect aspects of a knowledge-based approach. For example, the Navy is leveraging significant knowledge gained from prior technology development efforts, incorporating an open systems design approach, working to match the system's requirements with available resources, and reviewing preliminary designs for the air vehicle before conducting a competition to select a single contractor to develop and deliver the air vehicle segment. Why GAO Did This Study The Navy estimates that it will need $3.7 billion from fiscal year 2014 through fiscal year 2020 to develop and field an initial UCLASS system. The National Defense Authorization Act for Fiscal Year 2012 mandated that GAO evaluate the UCLASS system acquisition strategy. This report (1) assesses the UCLASS acquisition strategy, (2) identifies key areas of risk facing the system, and (3) notes areas where the Navy's strategy contains good practices. To do this work, GAO reviewed the Navy's acquisition strategy and compared it to DOD's acquisition policy, among other criteria; and reviewed Navy acquisition documents and spoke with Navy and Office of the Secretary of Defense officials. What GAO Recommends Congress should consider directing the Navy to hold a Milestone B review for the UCLASS system after the system level preliminary design review is complete. If the Navy does not comply, Congress should consider limiting the amount of funding available for the UCLASS system until an acquisition program baseline is provided. GAO included these matters for consideration because the Navy does not plan to make changes as a result of GAO’s recommendation to hold a Milestone B review following the system level preliminary design review—which is currently scheduled in fiscal year 2015. The Navy did not concur with the recommendation, and believes that its approved strategy is compliant with acquisition regulations and laws. GAO continues to believe that its recommendation is valid as discussed in this report. Click here for the full report (26 PDF pages) on the GAO website. -ends-
09/09/2013

US Lagging in Open Systems for UAVs

Source: US Government Accountability Office Ref: GAO-13-651 Issued July 31, 2013 37 PDF pages This report addresses (1) the characteristics and benefits of an open systems approach, (2) DOD’s efforts in implementing an open systems approach for its UAS portfolio, and (3) challenges, if any, DOD is encountering in implementing this approach. GAO analyzed relevant literature and DOD policies on open systems and interviewed agency and private industry officials to understand how open systems have been implemented and their benefits. In addition, GAO assessed acquisition documents and questionnaire responses from 10 current and planned UAS programs to determine their open system strategies. What GAO Found An open systems approach, which includes a modular design and standard interfaces, allows components of a product (like a computer) to be replaced easily. This allows the product to be refreshed with new, improved components made by a variety of suppliers. Designing weapons as open systems offers significant repair, upgrade, and competition benefits that could translate to millions of dollars in savings as the weapons age. Other benefits are shown in the figure below. The services vary in their use of open systems on the Department of Defense’s (DOD) 10 largest unmanned aircraft systems (UAS). The Navy used an open systems approach at the start of development for the air vehicle, ground control station, and payloads (i.e., cameras and radar sensors) for three of its four current and planned UAS and anticipates significant efficiencies. For example, Navy and contractor officials expect the Small Tactical UAS to be able to integrate at least 32 payloads developed by 24 manufacturers, some in a matter of days or months rather than years as previous programs experienced. Conversely, none of the Army or Air Force UAS programs initially implemented an open systems approach, relying instead on prime contractors to upgrade and modernize the UAS. The Army is now developing an open ground control station for each of its three legacy UAS programs. Only one of the Air Force’s three UAS programs plans to implement an open systems approach on fielded aircraft. Policies and leadership can help drive DOD’s acquisition community to use an open systems approach, but challenges exist. Although DOD and the services have policies that direct programs to use an open systems approach, the Navy is the only service that largely followed the policy when developing its UAS. In addition, while new open systems guidance, tools, and training are being developed, DOD is not tracking the extent to which programs are implementing this approach or if programs have the requisite expertise to implement the approach. Navy UAS program officials told us they relied on technical experts within Naval Air Systems Command to help develop an open systems approach for their programs. Until DOD ensures that the services are incorporating an open systems approach from the start of development and programs have the requisite open systems expertise, it will continue to miss opportunities to increase the affordability of its acquisition programs. (PDF format) Full text